CAST NICKEL ALLOY STEELS – ENGINEERING PROPERTIES

A PRACTICAL GUIDE TO THE USE OF NICKEL-CONTAINING ALLOYS Nº 4393

Produced by INCO

Distributed by NICKEL INSTITUTE

CAST NICKEL ALLOY STEELS – ENGINEERING PROPERTIES

A PRACTICAL GUIDE TO THE USE OF NICKEL-CONTAINING ALLOYS Nº 4393

Originally, this handbook was published in 1975 by INCO, The International Nickel Company Inc. Today this company is part of Vale S.A.

The Nickel Institute republished the handbook in 2022. Despite the age of this publication the information herein is considered to be generally valid.

Material presented in the handbook has been prepared for the general information of the reader and should not be used or relied on for specific applications without first securing competent advice.

The Nickel Institute, INCO, their members, staff and consultants do not represent or warrant its suitability for any general or specific use and assume no liability or responsibility of any kind in connection with the information herein.

.....

Nickel Institute

communications@nickelinstitute.org www.nickelinstitute.org

Cast nickel alloy steels

Engineering properties of four low-alloy commercial grades

Contents

Location of data chart	page 20
Typical applications	11–13, 21–23
Summary of mechanical properties	11–13
Mechanical property data	14–19
Physical properties	10
Fatigue properties	9–11
Notch impact strength and the 50% fibrous fracture criterion	8, 9, 17–19
Fracture toughness	3, 8, 9
Effects of heat treatment and section size	3, 11, 14–16, 18, 19
National specifications	3–7

INCO is a trademark

The data and recommendations in this publication are based on practical experience and research and development work. They are as complete and accurate as possible at the time of publication. It is important to ensure that the information is applicable to the particular project and/or practice under consideration.

First published 1975

© Copyright 1975

Few national specifications exist for hightensile low-alloy steel castings which relate minimum mechanical property requirements to appropriate composition ranges. Table 1 summarizes national specifications (or an authoritative classification of cast steels where a national specification does not exist) which are relevant to low-alloy nickel steels. In the majority of cases tensile properties are specified and in some instances impact values are also quoted, but in many cases the type of steel to be used is either left to the discretion of the supplier or left for agreement between the supplier and purchaser. Usually, suppliers of castings are able to call on their experience and on 'inhouse' data records to assist the purchaser in the best choice of composition for the proposed application, if adequate service details are given and the service requirements can be adequately defined in terms of basic engineering properties. Quite often the latter is a matter of approximate estimation; furthermore there is always the problem of equating dynamic loading conditions to conventional static tests used to check the quality of castings. Indeed some specifications for cast steel merely require a sample of the steel to give certain mechanical properties when cast and heat treated as a test coupon of 20-30 mm $(\frac{3}{4}-1\frac{1}{2})$ in.) section thickness. Sometimes the test coupon is cast-on to the casting and not separated from it until after heat treatment but, even so, unless the maximum effective section size of the casting is similar to that of the test coupon, the properties of the coupon do not give a reliable measure of those to be expected in all parts of the casting itself. Such test results are usually accepted as indicative of the quality of the steel cast from a particular melt. Nevertheless, when selecting a steel to meet particular specification requirements, consideration must also be given to the effect of section size and hardenability on the mechanical properties of the actual casting. This is especially important if the strength and toughness in all the sections of a casting of complex shape (with appreciable variations in section size) are to exceed the particular minima dictated by the service conditions.

The engineer/designer is often confronted by the task of locating and assessing the properties of different types of cast steel. However, compared with the information available for wrought steels, suitable data are not readily available. This publication provides mechanical property data for four well established cast nickel alloy steels within various ranges of tensile strength and includes information on the effects of section size wherever relevant data are available.

Manufacturers of nickel alloy steel castings often supply proprietary compositions to meet various mechanical property specifications. A survey of the types available in many different countries shows that the majority of these steels can be classified into the four composition ranges detailed in Table 2. The corresponding mechanical property data have been collated from various sources and form the basis of the typical properties given in this publication. Of the steels described, the greatest use is made of the 0.6 and 1.5 per cent Ni-Cr-Mo grades since they provide a good combination of properties over a useful range of section thicknesses and in castings of complex design.

Diagrams showing the effects of heat treatment and section size on mechanical properties have been derived from the available data and are presented on pages 14 to 19. The beneficial effects of increasing alloy content when higher tensile strengths are required, and when castings have large section thickness or appreciable variations in section size, can be seen by a comparison of the various diagrams. The diagrams showing the effects of section size on tensile properties clearly indicate that if the cast test coupon used for quality control is of a size appreciably smaller than the actual casting, the mechanical property test results can be misleading, particularly in the case of the lower alloy steels. Due consideration should therefore be given to this fact in selecting the type of steel to be used. Alternatively, precautions should be taken to check the properties of a test coupon of ruling section equivalent to that of the casting.

Heat treatment and section size effects

High-tensile steel castings are normally supplied in the normalized and tempered, oil- or water-quenched and tempered conditions, or in the annealed condition to facilitate machining operations. In the latter case they are subsequently re-heat treated by the purchaser. Normal heat treatment temperature ranges for the steels included in this publication are given in Table 2. Quench-hardening followed by tempering is often preferred for the 0.6 and 1.5 per cent Ni-Cr-Mo steels since for a given tensile level it usually provides the best combination of mechanical properties. This superiority of quench-hardening is generally shown by higher yield stress, toughness and ductility values, with reduction-of-area values being the more discriminating criterion of ductility.

The risk of 'quench cracking' in castings of complex shape which have sharp changes in section thickness can be minimized by reducing the rate of cooling in quenching and it is sometimes preferable to use a higher alloy steel which may be air-hardened rather than using one of lower alloy content which requires quench-hardening to achieve given mechanical properties. Satisfactory properties can often be achieved by normalizing without recourse to tempering although omission of the latter may introduce greater risks associated with residual internal stress. These stresses result from thermal gradients and transformation volume changes during cooling from the austenitizing temperature which, if at too high a level, may impair the ability of the casting to withstand applied stresses in service.

Quench-hardening is invariably employed to attain the highest tensile strengths in a given steel. However, designers should liaise closely with suppliers of castings when aiming to utilize the high tensile strengths attainable by quenching the higher alloy grades, i.e., 2.5 and 3.5 per cent Ni-Cr-Mo, since complex shapes may cause quench cracking problems. On the other hand, such steels can be used to overcome quench cracking if they are used in the air-hardened and tempered condition in preference to quench-hardened steels of lower alloy content.

Section size, apart from influencing the primary grain structure obtained on solidification of a casting, limits the cooling rate which can be achieved during quenching or air cooling in heat treatment and hence limits the mechanical properties attainable. It is usually necessary to compensate for an increase in section size by increasing the alloy content of the steel casting.

Fracture toughness – a design criterion

Fracture toughness is an important property since it defines the ability of a steel to resist initiation and rapid propagation of cracks from regions of stress concentration. Such

Country and specification	Heat			strength		[stress		Elongat	ion √ So		Impa	ci value		Hardness	T			Compos	ition		
or authoritative classification	treatment	As so Rr	ecified n. oB	Conv	rted		pecified s, os	Conv	erted	per ce		As specified		Converted		нв		·		Veight pe	T		
United								<u> </u>									c	Si	Mn	Ni	Cr	Mo	Other
Kingdom †																							
BS 3100:76 (Steel castings	}						Proof stre	 188, Rp 0-2					arpy V-	notch									
for general engineering	1									ł				T									
purposes)]	N/r	nm²	tonf/in*	kgf/mm²	N,	/mm²	tonf/in²	kgf/mm²			J	ft Ibf	kgl m/cm²									max.
Grade BT1	-		90 50	45	70 87	•	95	32	50	[35	26	4.5		201- 255±	-	-	-	-	-	-	{ S P 0.05
Grade BT2	-	8	50-	65 65	87- 102		585	30	60			25	18	3-2		248- 302‡	-	-	-	-	-	-	{\$ P}0.04
Grade 8T3	-	10	00-	65- 75	102-	•	395	45	71			20	15	2.5		293- 341 ±		-	-	-	-	-	{S P}0-03
85 3146 :				+					L														<u> </u>
Part 1:74 (Investment							Rp						Izod										
castings)			mm²	kg1/mm²	tonf/in²	·	'mm²	kgf/mm²	tonf/in ²		i	ft lbf	J	kgt m/em²									
Type CLA3	Hardened and	7	90 50	71- 87	45-	4	95	50	32	11		25	34	4-3		201- 255‡	-	-	-	-	-	-	{
Type CLA4	tempered "	81	i0-	87-	55-		85	60	38	11		15	20	2.6		248	_	-		-	-	-	{ S P 0.03
Type CLA5			00	102	65											302‡ 269-						1	1 (5 0.0
Grade A Type CLA5		10	00	102	65		80	90	57	9		30	41	5-2		321 ‡	-	-	-	-	-	-	{P 0.0
Grade B	"	11	60	118	75	10	000	102	65	5		30	41	5-2		341- 388±	-	-	-	-	-	-	{\$ 0.0 ₽ 0.0
							Rp	0.2															
		м	Pa				I Pa			Lo≕	R.A.												
		(= N	/mm²)	kgf/mm²	tonf/in?	(1	N/mm²)	kgf/mm²	tonf/in²	5-65 √ So	*												(S 0-02
(Aerospace	DW to DO T B	81	80 080	90- 110	57- 70	7	00	71	45	8	30	30	41	5-2		262- 321	0·22- 0·34	0·3- 0·6	0-3 0-8	0·5 3·0	0·5 1·3	0-2- 0-7	{ P 0-025 Cu 0-4
(series) BS HC10:74	1800	11	50	117-	74-	5	940	96	61	5	14	10	14	1.7		331-	0.22-	0.3-	0-3-	0.5-	0.5-	0.2-	S 0-02
(Aerospace (series)		13	00	133	84											401	0.34	0.6	0.8	3.0	1-3	0.7	(Cu 0.4
							Rp	0.1															
		tonf/in²	kgf/mm²	N/mm²	kg1/mm²	tonf/in ²	kgf/mm²	N/mm²	kgf/mm²	Lo 5-65 √ So	R.A. %												1
DTD 5172		55		850-	87-	43	-	660 ,	68	12	30	30	41	5-2		248-	-	-	_		-	-	-
DTD 666		65 60	94-5	1000 930	102	45	71	690	-	12	30	30	41	5-2		302 269	_	_					∫ S 0.02
DTD 705		75-	118-	1160-		60	94-5	930	_	7	14	10	14	1.7		340					-	_	P 0-05 S 0-02 P 0-05
OTD 6072		82	129	1270	_	60	94-5	930	~	,	14	10	14	1.7		340-	2	_	_	21	- 1	_	(\$0.02
		85	134	1310						· · · · ·		r		U-noich		390							[P 0-05
France					tonf/in2	N	/mm²	kgf/mm²	tonf/in2			daJ/cm ²	J	kgi m/cm2	ft lbf		'			1	5	1	
CTIF(1) Constructional		N/	mm² ·	kgf/mm ²	toni/in-	"	mm•	Kyi/min-	10111/11-	ļ		4.07,011	Ů]			Norr	ninal com	position		max.
grades : 30NCD2-M	NOT		50	66	42		100	41	28	13		6	30	6-1	22	-	0.3	0.3	0.5	0.6	0.6	0.2	{\$ 0.04 P 0.04
	00 & T up to 600-																						· ·
	625°C	8	50 ⁽²⁾	87	55	1	100(3)	71	45	111	2)	6(2)	30	6-1	22	-						0.3	∫S 0-04
30NCD8-M	N & T OQ & T	7	50	76	49		500	51	32	14		6	30	6-1	22	-	0.3	0.3	0.6	2.0	1.0	0.3	{P 0·04
	up to 600°C		00(2)	92	58		50(2)	66	42	120	2)	6(2)	30	6-1	22	-							
32NCD 08 08-M	NBT		50	76	49	f	300	61	39	14		5	25	5-1	18	-	0.32	0-3	0.5	2.0	2.0	0.6	{ \$ 0.04 P 0.04
	UD 10 UD 10																						
	650°C	8	50(2)	97	62	1	300(2)	82	52	130	3)	5(2)	25	5-1	18	-							
30NCD14-M	NOT			1									20	4.1	15		0-3	0.4	0.7	3.5	1.0	0.25	f \$ 0.04
	600°C N 8 T	S	00	92	58	1	700	71	45	8		4	20	•1	15	-	0.2	0.4	0.7	3.5		0.0	\ P 0 ·04
	up to 650°C		00	82	52		500	61	39	10		7	35	7-1	26	-							
35NCM8-M	NOT		00	92	58		300	61	39	9		4	20	4-1	15	-	0.35	0.4	1-4	1.5	1-4	0.3	{\$ 0.04 P 0.04
CTIF(1)						<u> </u>						-											
Wear-resisting						Į																0.2	∫S 0-04
gredes : 30NCD2-M	NOT		60	66	42		-	-	-	15		6	30	6-1	22	190 (360 ⁽³⁾⁽⁴⁾)	0.3	0.6	0.8	0.6	0.6	0.2	} P 0 04 \$ 0 04
30NCD4-M	NBT		50	76	49			-	-	14		5	25	5-1	18	(400(3)(4))	0-3	0.5	0.8	1.0	0.6	0·3 0·2	} P 0.04
20NCD6-M	NOT		00	71	45		500	51	32	12		3	15	3.1	11	(350(*))	0.2	0·35 0·3	0-8 0-6	1.4	0·9	0.2	}P 0-04
30NCD8-M	NBT		50	76	49		-	17	-	14		6	30	6-1	22	(450(3))	0.3	0.3	0.6	2.0	2.0	0.3	} P 0.04
32NCD08 08-M			50	76	49	1 '	800	61	39	14		6	25	5-1	18	(480(3))	0.32	0.3	0.9	2.0	2.0	0.0	1 Ρ Ο·Ο 4
30NCD14-M	N & T up to		-	92	58		700	71	45	8		4	20	4-1	15	(450(3))	0.3	0.4	0.7	3-5	1.0	0.25	{ \$ 0-04
	600°C	'	60			1		1	1	"						,					ł		
	up to 650°C		00	82	52		600	61	39	10		7	35	7-1	26	(450(3))							(S 0-04
35NCD 16 05-M	1		00	92	58		-	-	_	8		4	20	4-1	15	(500(3))	0.35	0.5	0.8	4-0	1.2	0-4	P 0-04
				+					}	<u>}</u>				L								†	
Germany	ł ·								Ì									(· · ·				1	
SEW(*) 610-62.				1				1										ļ					1
GS-40 Ni Cr Ma 656		l						78				DV	M test-	plece .								1	
(Werkstoff Nr. 1-6748)		kgf/	mm²	N/mm²	tonf/in2	kg	f/mm²	N/mm²	tonf/in2			kgt m/cm²	J	ft ibf									
Grede 1		<u> </u>				1			~	13			34	25		-	l						
<30 mm	-		90	740- 880	48 57	1	55	540	35			5 4		25		-	} -						
30–100 mm	-	1 7	5-90	740- 880	48 57		55	540	35	12) `	27	20		-							
	1 .	90	-105	880	67		70	690	44	11		4	27	20		-	0.37-	0.3-	0.5	1.2.	1.1-	0.6	_
Grade 2 <30 mm				1030	67	1	70	690	44	10		3	21	15		-	0.37-	0.3-	0·5 0·8	1.3- 1.7	1·1- 1·5	0.5-	-
<30 mm	-	. 90	-105	1 880	67-	1																	
< 30 mm 30100 mm Grade 3	-			880- 1030	67					1											[1	
<30 mm 30-100 mm		10	-105 5120 5120	1 880	67 67 76 67-		85 ·	830 830	54 54	8		3	21 14	15 10		-							

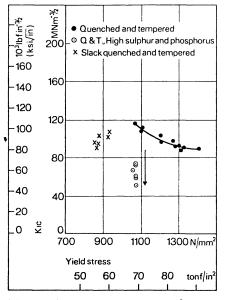
Readers are recommended to consult the levest lisuse of netional specifications for up-to-dete and comprehensive information paralising to the use of these pacifications. Extracts from Britlinh Standards (BS) are reproduced by permission of the British Standards Institution, 2 Park Street, London W1A 2BS. Cartial steeps outside the scope of this publication are excluded. These comprise: nickel alloy steel castings for case-hardening. 34 per cent included are strings for use at low temperatures. 5 if snecilied by purchaser.

(1) To be published.
 (2) Average values.
 (2) Average values in parenthesis are those obtainable on the surface by suitable heet-treatment.
 (4) Higher surface hardness may be obtained by localised herdening heet treatment.
 (5) Surface hardness attinable by localised hardening hest treatment.
 (6) Surface hardness testimable by localised hardening hest treatment.
 (7) Not guesanted.

(continued)

¢

Country and specification	Heat	Tensile	strength		Yield			Elongation Lo=5-65	on / So		Impac	t value		Hardness				Compos			
or authoritative classification	treatment condition	As specified Rm, oB	Conv	betred	As specified Rs, os	Conv	betrer	рег сел	a I	As specified		Converted	1	НВ	с	Si	Mn	eight per Ni	cent Cr	Mo	Other
Austrie Onorm M3181 :1959		kgi/mm²	N/mm²	tonf/in²	R kgf/mm²	s N/mm²	tonf/in2														
Stg 60(e) Stg 60530(e) Stg 60536(e)	Ξ	60 60 60	590 590 590	38 38 38	30 36	290 350	19 23	8 15 15		Ξ	Ξ	Ξ		Ξ	Ξ	Ξ	Ξ		=	Ξ	Ξ
Italy .					R					(2mm	fesnage deep U-	notch)									
UNI 4010 : 1958 ⁽⁹⁾		kgf/mm²	N/mm²	tonf/in²	kgf/mm²	N/mm²	tonf/in²			kgi m/cm²	L	ft lbf									max. ∫ S 0·035
Type 3 ^(a) Type 4	_	60 70	590 690	38 44	35 45	340 440	22 29	15 12		6 5	47 39	35 29		-	_	=	_	-	-	-	} P 0.035 S 0.035
Type 5	-	80	780	51	60	590	38	10		4	31	23		-	-	-	-	-	-	-	{\$ 0.035 { P 0.035 { P 0.035
India					Rp	0.5					Izod ⁽¹⁰⁾										
15 2664 :73		kgf/mm²	N/mm²	ton1/in²	kgf/mm²	N/mm ²	tonf/in2	Lo≕ 5-65√So 17	R.A. %	kgim 3-5	J 34	ít ibí 25	kgi m/cm² 4·4	190					_		_
Grade 1 CS65 Grade 2	_	65 71	640 700	41 45	40 57	390 560	25 36	15	37 35	3.5	34	25	4-4	207	-		-	-	-	-	-
CS71 Grade 3 CS85	-	85	830	54	71	700	45	12	30	2.8	27	20	3-5	248	-	-	-	-	-	-	-
Grade 4 CS105 Grade 5	-	105 125	1030 1230	67 79	87 102	850 1000	55 65	8 5	22 12	2·0 —	20	14	2.5	311 363	-	-	-	-	-	-	-
CS125 U.S.A.(14)					F	 1s	L		$\left \right $	Ch	arpy V-n	1									
ASTM		10ºlbf/in²	N/mm ² (kgf/ mm ²)	tonf/in2	10 ³ lbf/in ²	N/mm ² (kgf/ mm ²)	tonf/in1	Lo	R.A.	ft lbf	L	kgl m/cm ²	1								max.
A148-71 : Grade 90-60		(90	620	40	60	410 (42)	27	20	40	-	-	-	1	-	-	-	-	-	-	-	{ \$ 0.06 P 0.05
Grade 105-85	Annealed Nor-	105	(63) 720 (74)	47	85	(60)	38	17	35 30	-	-	-		-	-	-	-	-	-	-	} S 0-06 P 0-05 S 0-06
Grade 120–95 Grade 150–125	N & T	120	830 (84) 1030	67 67	95 125	660 (67) 860	56	9	22	-	-	_		_	_	_	-	-	-	-	} P 0-05 } S 0-06 P 0-05
Grede 175–145	oết tếo	175	(105) 1210 (123)	78	145	(88) 1000 (55)	65	6	12		-	-		-	-	-		-	-	-	{\$ 0.05 P 0.05
ASTM A486-71 : Class 90 Class 120	N. N & T or Q & T Q & T	90 120	620 (63) 830 (84)	40 54	60 95	410 (42) 660 (67)	27 42	20	40 30	25(11) at 70 F 15(11) at 0°F 15(11) at 50°F 30(11) at 70 F 25(11) at 0°F	34 20 20 41 34	4·3 2·6 2·6 5·2 4·3		-	0-35 0-35		elements :				max. { \$ 0.06 P 0.05 { \$ 0.06 P 0.05
ASTM A487-71a : Class 4N	N&T	90	620 (63)	40	60	410 (42)	27	20	40	15 ⁽¹¹⁾ at -50 F	20 20 20	2.6		-	max.	max.	1.0	0.4-	0.4-	0.15-	m:ix. ∫ \$ 0.045 P 0.04 Cu 0.50
Class 4Q Class 4QA	тер Тер	105	720 (74) 790	47 51	85 95	590 (60) 660	38 42	17	35 35	15 ⁽¹²⁾ 15 ⁽¹²⁾	20 20	2·6 2·6		_	ſ		max.	0.8	0-8	0.3	(w 0·10
Class 5N	N&T	105	(81) 720 (74)	47	70	(67) 480 (49)	31	18	35	15(12)	20	2.6		-	} _{0·3}	0.8	1.0-	0.4-	0.4-	0-15-	∫ S 0-045 P 0-04 Cu 0-50
Class 5Q Class 6N	Q&T N&T	105	720 (74) 790	47 51	85 80	590 (60) 550	38 36	15 18	30 30	15(12)	20 20	2·6 2·6		-	{		1.4	0.8	0.8	0.25	W 0-10
Class 6Q	0.6T	120	(81) 830 (84)	54	95	(56) 660 (67)	42	12	25	15(12)	20	2.6		-	}0·38	0.8	1·3- 1·7	0-4 0-8	0·4 0·8	0-3- 0-4	P 0-04 Cu 0-50 W 0-10
Class 10N Class 10Q	N & T Q & T	100 125	690 (70) 860	45 56	70 100	480 (49) 690	31 45	18 15	35 35	15 ⁽¹²⁾ 15 ⁽¹²⁾	20 20	2·6 2·6		-	}o.3	0.8	0·6 1·0	1-4- 2-0	0·55- 0·9	0·2- 0·4	S 0-045 P 0-04 Cu 0-50 W 0-10
ASTM A643-71 : Grade B Cless 1 Grade D Cless 1 Cless 2	N & T or Q & T N & T or Q & T	80-110 105-135 115-145	(88) 550-760 (56-77) 720-930 (74-95) 790-1000 (81-102)	61-65	50 85 100	(70) 340 (35) 590 (60) 690 (70)	22 38 45	22 15 13	35 30 30						0·25 } 0·20	0-6 0-6	1 ·15- 1 ·50 0 ·4- 0 ·7	0.45- 1.0 2.75- 3.90	0·4 max. 1·5– 2·0	0.45- 0.6 0.4- 0.6	S 0-035 P 0-035 V 0-03 C U 0-50 W 0-10 S 0-02 P 0-02 V 0-03 C U 0-50 W 0-10
SAE J4355 : Grade 090 Grade 0105 Grade 0120 Grade 0150 Grade 0175	1 1 1	90 105 120 150 175	620 (63) 720 (74) 830 (84) 1030 (105) 1210 (123)	40 47 54 67 7,8	60 85 95 125 145	410 (42) 590 (60) 660 (67) 860 (88) 1000	27 38 42 56 65	20 17 14 9 6	40 35 30 22 12					187- 241 • 217- 248 • 248 - 311 - 363 • 363 - 415 •							{ S 0-06
			(123)			(102)	I	Lo ~ 2 i (51 mm	in. n)												
SAE/AMS(13) AMS					Rp	0.2		(51 mm or 4·5 √	Śo	-				HRC	0.20	0.5	0.6-	1.65-	0.65-	0.3-	Cu 0-35
AMS 53298:73	Annealed O.Q. and	-	-	-	-	-	-	-		-	-	-		≤ 30	0·28- 0·36	0·5- 0·9	0.6- 1.0	2.0	1.0	0.45	$\begin{cases} Cu & 0.35 \\ S & 0.025 \\ P & 0.025 \end{cases}$
	double tempered	180	1240 (127)	80	160	1100 (112)	71	5		-	-	_		40- 45							


(8) For these specifications of relatively low strength virtually unalloyed steel may be suitable for medium-size castings. For estings of thick section a nickel alloy steel may be used to ensure adequate hardenability and attainment of the properties required.
(3) Standard undergoing revision.
(10) Where due to mass design it is not possible to liquid quench the castings. It may not be possible to achieve the specified (10) Where due to mass design it is not possible to liquid quench the castings. It may not be possible to achieve the specified

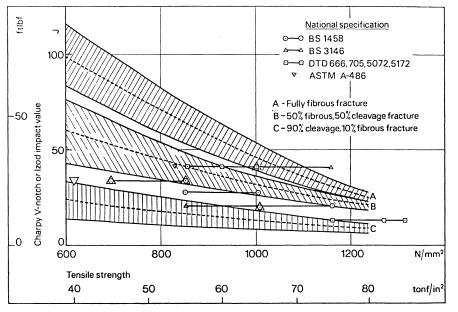

(11) For sections up to 2 in (51 mm) thickness.
 (12) This minimum impact value may be included by contract agreement.
 (13) Acrospece metrical parefulfication.
 (14) Certain steels outside the scope of this publication are excluded. These comprise castings for binand. Must demonstrative script.

Table 2. Four internationally-available nickel alloy steels. Compositions and heat-treatment temperatures.

			Composition			Usual	temperature ran	ge, °C	
Steel			eight per cer	Normalizing	Oil- or	Tempering			
	С	Mn	Ni	Cr	Мо		water- quenching		
0·6% Ni-Cr-Mo 1·5% Ni-Cr-Mo 2·5% Ni-Cr-Mo 3·5% Ni-Cr-Mo	0·26–0·36 0·30–0·40 0·30–0·40 0·30–0·40	0.6–1.0 0.4–0.8 0.4–0.8 0.4–0.8	$\begin{array}{c} 0.4 - 0.8 \\ 1.3 - 1.9 \\ 2.0 - 2.8 \\ 3.2 - 4.0 \end{array}$	$\begin{array}{c} 0.4 - 0.8 \\ 0.6 - 1.0 \\ 0.6 - 1.0 \\ 1.0 - 1.4 \end{array}$	0.15-0.35 0.20-0.40 0.30-0.60 0.30-0.60	870–930 860–920 850–910 850–910	840–890 830–880 820–870 810–860	200–690 200–690 200–670 200–650	

Note: The mechanical properties quoted in this publication refer to steels which generally conform to the above composition ranges. However, steels with lower or higher carbon contents than those shown may be used for special purposes, e.g., to give higher hardness for increase of wear resistance. Selective surface hardening (flame) is also employed for that purpose, while some components (usually of lower carbon content) may be carburized on wear resisting surfaces.

Figure 1. Room-temperature fracture toughness (KIC) of cast 1.5 per cent Ni-Cr-Mo steel (after John F. Wallace: 'casteel', Spring 1974, vol. 8, No. 2. Steel Founders Soc. of America).

Figure 2. Impact test fracture appearances normally expected in low-alloy steel castings having given tensile strengths and impact values. The tensile strength and impact value requirements of some national specifications which stipulate an impact test are shown for comparison.

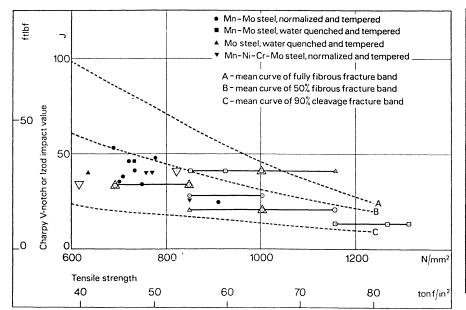
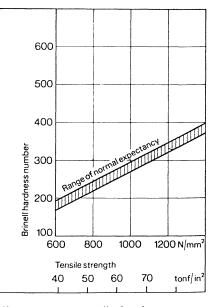



Figure 3. Representative tensile strength/impact value test data for several low-alloy steel castings which meet the mechanical property requirements of some national specifications (see Figure 2 for legends). The impact fractures of these steels would probably show 50 per cent, or more, cleavage (brittle) fracture.

Figure 4. Brinell hardness as a function of tensile strength for lowalloy cast steels, regardless of heat treatment. regions may be caused by the presence of internal or superficial defects in an applied stress field. These defects are often unavoidable and may comprise inclusions, microcracks, notches formed during machining and those inherent in the design/manufacturing process, or cracks developed in service as a result of fatigue, stress corrosion and other environmental factors. Stress concentrations are sometimes relieved by local yielding but yielding can be prevented by the constraint imposed by surrounding metal, particularly in large sections, and in materials of high yield strength. The larger the defect the greater is the stress intensity in its vicinity and the lower the operational stresses which can be borne. Alternatively, as the applied stress increases, the defect size which can be tolerated decreases rapidly. A steel having high fracture toughness will withstand operational stresses near to the maximum permissible stress, even in the presence of relatively large defects, whereas steel of low fracture toughness is likely to fail at lower applied stresses if even minor defects are present. In recent years sophisticated methods of assessing fracture toughness have been developed and applied to wrought steels, but the application of these procedures to cast steels has so far yielded only limited data. Nevertheless, research studies based on the principles of linear elastic fracture mechanics are currently in progress to obtain fracture toughness data for cast steels similar to those available for many wrought steels, in terms of the plane strain fracture toughness parameter K_{1c}. This involves testing with a known applied stress in the presence of a crack of established dimensions, the test being designed with sufficient constraint on the sample to ensure that 'plane strain' conditions prevail. Given the K_{1c} value of a steel the critical size of crack, or flaw, which may cause brittle fracture in service may be obtained from the relationship:

$K_{1c} = Q\sigma \sqrt{\pi a}$

where the value of Q depends on the geometry and position of the crack, σ is the gross applied stress normal to the crack, and 'a' is the critical depth of a surface crack or half the critical width of an embedded crack. In the general case, Q can be shown not to exceed 1.2.

Plane strain fracture toughness data for a $1\frac{1}{2}$ per cent nickel-chromium-molybdenum cast steel are shown in Figure 1. The beneficial effect of proper quenching to ensure satisfactory hardening is demonstrated by the relatively lower fracture toughness of the slack-quenched steel, while increase of sulphur and phosphorus levels in the range S+P=0.03 to 0.12 per cent also reduced fracture toughness.

Notch impact strength – the 50% fibrous fracture criterion

In the absence of adequate K_{1c} data for cast

steels in general, recourse must be made to the available data from impact tests. Table 1 shows that some specifications stipulate minimum impact values, but it is now generally recognised that while such data are useful for quality control they cannot be applied directly in design. For most casting design purposes, the appearance of the fracture in an impact test (i.e., the proportions of fibrous and brittle areas) is superior to the energy absorption value as a criterion of fracture toughness. Therefore, it is of practical importance to establish correlations between impact energy value and probable fracture appearance.

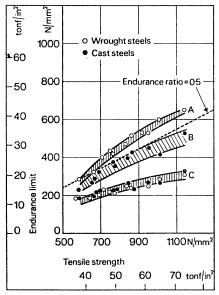
In the early studies of brittle fracture in wrought steels correlations were established between impact value and probability of brittle fracture in service for certain classes of steel where service data were available on satisfactory and failed structures. In effect, these correlations involved a major dependence on impact fracture appearance. Subsequently it became generally accepted that for most wrought and cast steels, unless stresses near to the permissible upper limit and/or large defects are involved, uninhibited cracking is unlikely to occur in service if in an impact test at the lowest operating temperature the fracture appearance shows over 50 per cent fibrous fracture. This, however, is only true if the impact transition curve does not show a sharp fall in energy absorption values and per cent fibrous fracture over a narrow temperature range. An alternative way of expressing this is to say that the 50 per cent fibrous fracture appearance transition temperature (FATT) should be well below the normal service temperature. Thus a small shift in the transition curve towards higher temperatures (which may well occur in an actual casting, as distinct from test pieces taken from cast test coupons) will not cause a decrease in the per cent fibrous fracture to an unsatisfactorily low value under service conditions. In the case of castings which are to operate under extremely cold conditions, e.g. arctic regions, it is advisable to determine the impact transition curve over a range of test temperatures which span the service temperature. Typical impact transition curves are included in the data shown for three of the steels reviewed in this publication.

Figure 2 shows the effect on the impact fracture appearance of various combinations of tensile strength and Charpy Vnotch impact values. It can be seen that for a given fracture appearance, the lower the strength the higher must be the impact value. The diagram also includes the impact values and tensile strengths stipulated in several of the specifications given in Table 1. It shows that, in some instances, castings may be obtained which satisfy these specifications but have a lower 'fracture toughness' in terms of fracture appearance than is generally desirable. In defence of the specifications it must be emphasized that these quote minimum impact energy values and actual test values are usually in excess of the minimum. Nevertheless when high tensile castings of unproven compositions are contemplated for a given design and reliance is being placed entirely on specification impact toughness requirements, the purchaser might do well to remember the adage "Let the buyer beware". To amplify this point, Figure 3 shows the Mean Fracture Appearance curves of Figure 2 together with plot points for Tensile strength/Impact data obtained from cast test coupons of several types of low-alloy steel. Each of these test castings satisfies the requirements of at least one of the specifications also shown on the diagram, but it appears probable that the impact fracture appearance of the steels illustrated would fail to meet, or only just meet, the 50 per cent fibrous criterion.

To assist the selection of a steel to meet specific impact fracture appearance requirements, in addition to particular mechanical property values, Figure 2 may be used in conjunction with the diagrams showing the effect of tensile strength on impact energy values of the various steels included in this publication.

Brinell hardness

The linear relationship between Brinell hardness and tensile strength of steel castings is well known but for convenience is reproduced in Figure 4. Brinell hardness is quoted in a few national specifications, see Table 1, but it is also widely used to check the uniformity of a batch of castings for which approval tensile tests have been made on representative samples or test coupons. It can also be useful in check tests made on castings after service where an indication is required of the nominal strength in the absence of recorded data.


Fatigue properties

The smooth-bar fatigue endurance limits of cast low-alloy nickel steels are, in the main, dependent on the tensile strengths to which the steels are heat treated. For given tensile strengths they are usually slightly higher than those of cast plain carbon steels and slightly less than those of wrought low alloy steels of comparable compositions tested in the direction of working. The endurance ratio of the cast steels (i.e. ratio of endurance limit to tensile strength) varies between approximately 0.4 and 0.5 for smoothpolished or lathe-turned test bars (see, for example, Table 3) and is independent of composition and heat treatment. The presence of a notch reduces the endurance ratios of both cast and wrought steels and the effect is greater the higher the tensile strength, see Figure 5. However, the effect of notches on the fatigue strength of cast steels is less than that for wrought steels because cast steels are less notch sensitive and, for this geometric condition, both

Table 3. Typical fatigue strength data for cast 0.6 per cent and 1.5 per cent Ni-Cr-Mo steels.

					Enduran	ce limit ⁽¹⁾				[atimus	
Steel	Heat treatmen		e strength	Unno	otched	Notc	hed ⁽²⁾	Endurano	ce ratio	Fatigue strength reduction	Notch
Steel	°C	N/mm	² tonf/in ² (kgf/ mm ²)	N/mm²	tonf/in ² (kgf/ mm ²)	N/mm²	tonf/in² (kgf/ mm²)	Unnotched	Notched	factor Ka	sensitivity
0·6 Ni-Cr-Mo		900 350 790	51 (81)	390	25 (40)	230	15 (23)	0.49	0.29	1.69	0.58
	Water quench 8 Temper 6	845 850 950	62 (97)	450	29 (46)	270	17 (28)	0.47	0.28	1.68	0.57
1∙5 Ni-Cr-Mo		900 505 870	56 (89)	440	28 (45)	240	16 (24)	0.50	0.28	1.79	0.66
	Water quench & Temper &	330 550 1160	75 (118)	540	35 (55)	330	21 (34)	0.47	0.28	1.68	0.57

(1) $N=10^7$ cycles. (2) Kt=2.2.

Figure 5. Variation of fatigue endurance limit with tensile strength for comparable cast and wrought steels. (after Evans, Ebert and Briggs: Trans. ASTM, 1956, vol. 56).

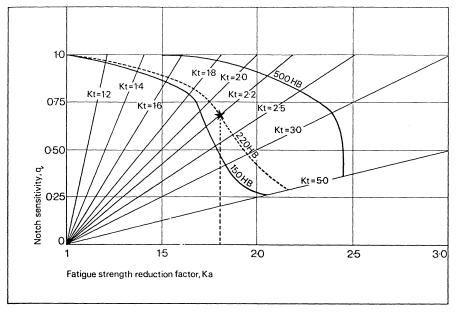
A – Wrought, unnotched B – Cast, unnotched

C - Cast and wrought, notched. Theoretical stress concentration factor Kt=2.2

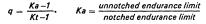
Table 4. Nickel alloy cast steels.Physical properties.

Property	
Density gm/cm ³	7.97
lb/in ³	0.288
Specific gravity	7.97
Specific heat J/kgK	420-460
cal/gm °C	0.10-0.11
Thermal conductivity	
W/m K	46.7
cal/cm s °C	0.112
Linear coefficient of	
thermal expansion	
20–600°C 10 ⁻⁶ /K	14.5-16.25
Electrical resistivity μΩcm	15–20
Modulus of elasticity	
KN/mm ²	200-210
10 ⁶ lbf/in ²	20–30

materials have similar fatigue properties irrespective of whether the corresponding wrought steels are tested in the longitudinal or transverse directions of working. Similar equivalence of fatigue properties is obtained with lathe-turned surface finishes, which have negligible effect on cast material, whereas the fatigue properties of wrought steels are impaired by the slight notch effect of a lathe-turned finish.

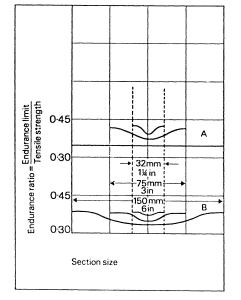

Figure 5 shows the expected range of notched-bar endurance limits of cast steels at various tensile strengths for a theoretical stress concentration factor Kt=2.2. It will be seen that the notched fatigue strengths of both cast and wrought steels at any given tensile level are closely similar, consequently the effect of varying notch severity on the endurance limit of cast steels may be predicted to a near approximation from the curves shown in Figure 6 determined on wrought steel, used in conjunction with the upper band of Figure 5. For example, with a value of Kt=2.2 and a hardness level of 220 HB (i.e. tensile strength of about 760 N/mm² (49 tonf/in²)) a fatigue strength reduction factor Ka=1.82 is obtained from Figure 6. From Figure 5 the unnotched endurance limit for wrought steel at a tensile strength of 760 N/mm² is 420 N/mm² (27 tonf/in²), therefore the notched endurance limit is readily calculated from the

equation $Ka = \frac{\text{unnotched endurance limit}}{\text{notched endurance limit}}$

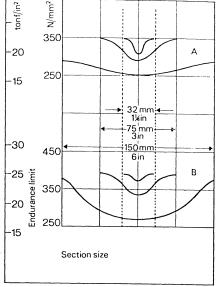

The value obtained is 230 N/mm² (15 tons/in²) which is virtually the same as that obtained from the lower band of Figure 5 for both wrought and cast steels at a tensile strength of 760 N/mm² and Kt=2.2. It is evident, therefore, that the relationships of Figures 5 and 6 are compatible and may be used conjointly to derive the approximate notched-bar endurance limits of cast steels for other values of Kt.

Since steel castings are mainly used with an as-cast surface finish on at least some part of the component, it is important to remember that some tests have shown that the as-cast surface can lower the endurance limit by approximately 30 per cent as compared with a polished surface. For wrought steel, a comparable finish, say, hot-rolled or as-forged, has been found to decrease the endurance limit by about 40 per cent at a tensile strength of 760 N/mm² (49 tonf/in²). There is thus little difference between the fatigue limits of comparable cast and wrought steels having similar tensile strengths if no special surface preparation is made.

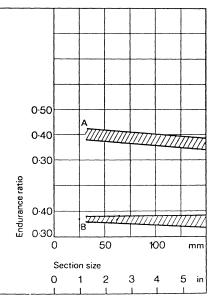
The performance of a cast steel under fatigue conditions is likely to be reduced with increase in section size of the casting. The loss in properties is attributed to the so-called 'section size effect' which has two components: the first is the 'geometric component' dependent on increases in strain gradients and constraints imposed by the general mass of metal, i.e., increase of dimensions gives rise to increased stress concentrations; the second is associated with metallurgical factors such as the effect of mass on microstructure, soundness, distribution and size of inclusions and compositional segregation. In tests on standard size test pieces taken from several positions in castings of various sizes (thus eliminating the geometric component) it has been shown that the endurance limit decreases from surface to centre of the casting, see Figure 7. Although this variation is similar to that for the distribution of tensile strength across the sections, the similarity is not an exact parallel, because the endurance ratio tends to decrease slightly in passing from the surface to the centre of a section, see Figure 8. The endurance ratios from Figure 8 are replotted in Figure 9 to show the range of values to be expected within a casting as a function of section size. The indications are that, for a given steel, the lowest and highest values for a given section size encompass a


Figure 6. Relationship between notch sensitivity (q), fatigue strength reduction factor (Ka) and theoretical stress concentration factor (Kt) for wrought steel at various hardness levels (after Johnson and Lipson: Product Engineering, Oct. 1947, vol. 18. The relationships shown for Kt=2.2 and 220HB are interpolations of the original data).

range of about 10 per cent difference in endurance ratio. This slight reduction in endurance ratio at the centres of large sections would probably be of negligible influence on the performance of the whole section in bending fatigue since the outer fibres generally receive the maximum stress in service and it is the properties at and near the surface of the section which would largely dictate the overall performance. The effect of the geometric component of size must also be taken into account, but this is difficult to predict quantitatively since the available information is meagre and inconclusive; however it is to be expected that the endurance ratio will be impaired in large sections because of the geometric effect.


Summary of mechanical properties and applications

Typical tensile and impact properties of the four cast nickel alloy steels included in this publication are summarized in Table 5, together with a brief outline of applications. It will be noted that steels of these types are considered most suitable for service conditions demanding high resistance to shock and severe dynamic stressing where optimum 'fracture toughness' and fatigue strength are all-important.


Figure 8. Distribution of fatigue endurance ratio within various section sizes of cast 0.6 per cent Ni-Cr-Mo steel. (after Evans, Ebert and Briggs: Proceedings ASTM, 1956, vol. 56).

A – Normalized and tempered B – Quenched and tempered

Figure 7. Distribution of fatigue endurance limit of cast 0.6 per cent Ni-Cr-Mo steel within various section sizes. (after Evans, Ebert and Briggs: Proceedings ASTM, 1956, vol. 56).

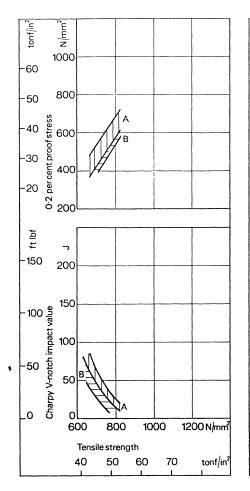
A – Normalized and tempered B – Quenched and tempered

Figure 9. Ranges of fatigue endurance ratios obtained with small specimens taken from several positions within 0.6 per cent Ni-Cr-Mo steel castings of various section sizes. (after Evans, Ebert and Briggs: Proceedings ASTM, 1956, vol. 56).

A -- Normalized and tempered B -- Quenched and tempered

Table 5. Summary of typical mechanical properties of cast nickel alloy steels and scope of applications.
--

Steel type	Heat treatment condition		tion kness	Tensile	strength	0-2% proc	of stress(1)	Elongation(1) Lo∞. 5-65 √ So	Reduction of area ⁽¹⁾	Charpy impac	V-notch t value(1)	50% fibrous FATT ⁽¹⁾⁽²⁾	Per cent fibrous fracture in impact test at 20 °C	Hardness HB	Applications
		inch	mm	N/mm²*	tonf/in ² (kgf/mm ²)	N/mm²*	tonf/in ² (kgf/mm ²)	per cent	per cent	ر.	ft lbf (kgf m/cm²)	٢	(estimated from Fig. 1)	110	
0-6% Ni-Cr-Mo		1-4	25	700	45 (71)	420-530	27-34 (43-54)	15-22	40-50	45-60	33-44 (5·7-7·6)	-	45-55	205	General engineering castings.
NI-CI-WO	N&T	1=4	102	800	52 (82)	560-670	(43–34) 36–43 (57–68)	11-17	30-40	15-25	(37-7-0) 11-18 (1·9-3·2)	_	10-20	230	Earth moving equipment : buckets, fabricated bucket corner sh and hitch plates. Tractor drawn
		4-6	102- 152	700 800	45 (71) 52	390-420 530-560	25–27 (40–43) 34–36	12-15 9-12	20-40 15-30	25-45 7-10	18-33 (3·2-5·7) 5-7	-	15-45 5-10	205 230	scraper goosenecks. Sprockets, caterpillar track shoes, gears and pinions. Power shovel deck
					(82)		(54-57)				(0.9–1.3)				frames. Dredge impeller pump castir Excavator slewing rings.
	одат	-	-	800	52 (82)	600	39 (61)	14	50	1 -	-	-		230	Crane wheels. Oil well valve bodies.
			_	1000	65 (102)	750	49 (76)	10	40	17	13 (2·2)	-	20	280	
	мавт	1-4	25-	800	52 (82)	620-710	40-46 (63-72)	13-21	35-60	50-130	37-96 (6·4-16·6)	-	60-100	230	
			102	1000	65 (102)	830-920	54-60 (85-94)	9–14	20-45	20-40	15-30 (2·5-5·1)	-	25-80	280	
		6	102– 152	800	52 (82)	600-620	39-40 (61-63)	9-13	15-35	15-30	11–22 (1·9–3·8)	-	10-30	230	
1·5% Ni-Cr-Mo	Normalized			1000	65 (102)	780-850	51–55 (80–87)	9–11	20-30	10	7 (1·3)	-	7-10	280	Earth moving equipment : large track shoes, gears and sprocke Cast bodies, teeth and lips of dipper
	N&T			800	52 (82)	560-630	36-41 (57-64)	12-16	30-45	30	22 (3·8)	-	30	230	Crusher rocker arms and heads. Pump casings and impellers.
	NGI		-	1000	65 (102)	780-850	(37-04) 51-55 (80-87)	9-12	20-30	12	(3·8) 9 (1·5)	-	10	260	Large gear wheels of power plant and cement mills. Steel mill crane hooks and tongs.
	0Q & T	4	102	740	48 (75)	550	36 (56)	19	50	-	-	-	-	215	Mining machinery. Forging hammer strikers and bolsters Roughing rolls.
		1-2 1	25 64	800	52 (82)	620-670	40–43 (63–68)	12-23	30-65	60-85	44-63 (7·6-10·8)	30 to 80	75–100	230	Marine mooring chain swivels and ho Precision cast parts requiring high strength and ease of heat treatment
		11	32	1000	65 (102)	830-890	54-58 (85-91)	9–15	20-40	25-45	18-33 (3·2-5·7)	-50	35-95	280	(i.e., normalize and temper).
			-	1100	71 (112)	940-1000	61–65 (96–102)	8–11	15-35	15-35	11-26 (1·9-4·5)	-	20–90	310	
2·5% Ni-Cr-Mo		4	102	850	55	680	44 (69)	18	50		-	-	_	245	High tensile castings of all types. Earth moving ripper arms, Walking drag-line feet. Ore crusher roll shells
	00 & T	1-21	25- 57	900	58 (92)	740–790	48–51 (75–81)	12-22	30-50	55-70	41–52 (7·0–8·9)	-115	95-100	260	Pulp crushing cones. Hydraulic cylin Steelworks converter barrel rings, railway bogey frames and couplings
	00.81	11	32	1000	65 (102)	840-900	54–58 (86–92)	10–17	25-45	40-50	30-37 (3·8-6·4)	-95	85-100	280	Aircraft wing hinge fittings Mine roof supports and mining-mac drum barrel castings
		-	-	1100	71 (112)	950–1000	6265 (97102)	8-13	20-35	27-38	20-28 (3·4-4·8)	-	50-100	310	orom barrer castings
		11	32	1200	78 (122)	1050-1100	68–71 (107–112)	6–11	15-30	18-28	13–21 (2·3–3·6)	-70	40-100	335	
3·5% Ni-Cr-Mo		11	32	930–950	60–62 (95–97)	790-840	51–54 (81–86)	15-21	30-45	45-60	33–44 (5·7–7·6)	-120	80-100	265-270	High tensile and/or heavy section engineering castings. Earth boring machine parts.
	00.8T	4	102	970	63 (99)	830	54 (85)	13	35	-	-	-	-	275	Precision cast electrical contact breaker parts. Large gears for dredges. etc
		-	-	1000	65 (102)	840-900	54–58 (86–92)	12–18	25-40	40-50	30-37 (5·1-6·4)	-	80-100	280	
		11	32	1100	71 (112)	9501000	62-65 (97-102)	8-15	20-35	30-40	22-30	-90	70-100	310	
				1200-1250		1050-1140	(97–102) 68–74 (107–116)	6-10	15-25	18-25	(3·8–5·1) 13–18 (2·3–3·2)	60	45-100	335-345	


~

.

(1) Ranges of values are given where data are available for a number of castings; single values are based on more limited information and be may related to a single melt.

• Other values converted from this unit.

(2) FATT-Fracture appearance transition temperature derived from impact tests.

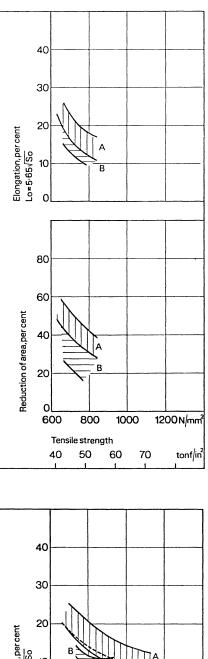
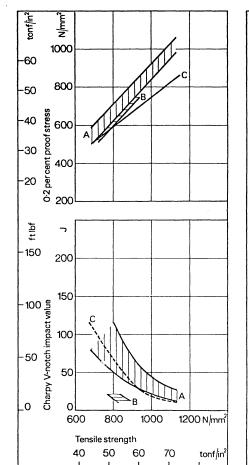
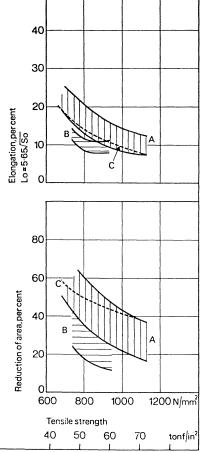
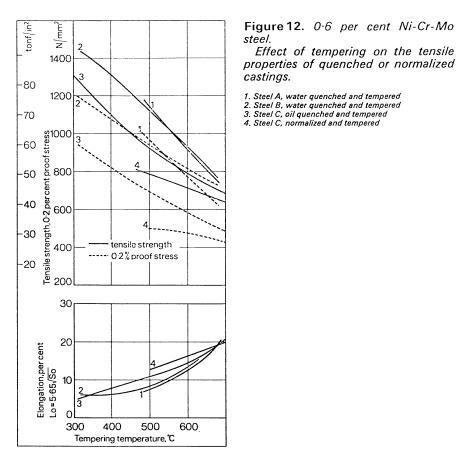
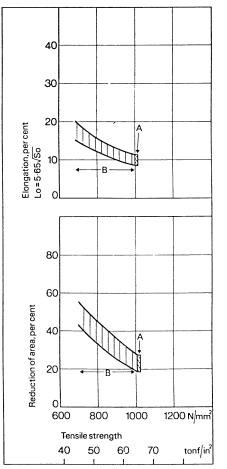



Figure 10. Cast 0.6 per cent Ni-Cr-Mc steel; normalized and tempered. Effect of tensile strength and section. thickness on proof stress, ductility and Charpy V-notch impact value.

A – 25 to 100 mm (1–4 in.) section thickness B – 100 to 150 mm (4–6in.) section thickness


Figure 11. Cast 0.6 per cent Ni-Cr-Mc steel; oil- or water-quenched and tempered.

Effect of tensile strength and section thickness (where known) on proostress, ductility and Charpy V-notch impact value.

- A Water quenched and tempered; 25-100 mm (1-4 in. section thickness B – Water quenched and tempered; 150 mm (6 in.)
- section thickness C Oil quenched and tempered; single melt

tonf/in² N/mm² 1000 -60 800 -50 stress -40 600 cent proof -30 В 400 per -20 ò 200 ft lbf ~ 150 200 150 0 00 Charpy V-notch impact value 100 50 Ą 0 600 800 1000 1200 N/mm Tensile strength 40 50 60 70 tonf/in²

Effect of tempering on the tensile

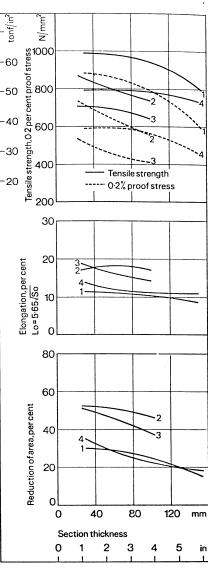
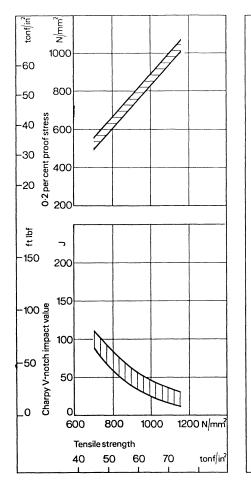


Figure 13. Cast 0.6 per cent Ni-Cr-Mo steel.


Effect of section thickness on representative tensile properties after various heat treatments.

1. Steel D, water quenched and tempered 2. Steel E, water quenched and tempered

3. Steel E, normalized and tempered 4. Steel F, normalized and tempered

Figure 14. Cast 1.5 per cent Ni-Cr-Mo steel; A – normalized, B – normalized and tempered.

Effect of tensile strength on representative values of proof stress, ductility and Charpy V-notch impact energy.

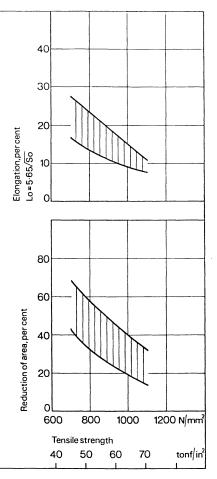
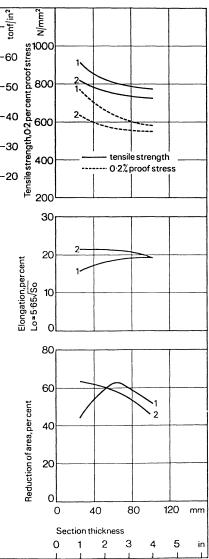



Figure 15. Cast 1.5 per cent Ni-Cr-Mo steel; oil quenched and tempered. Effect of tensile strength on representative values of proof stress, ductility and Charpy V-notch impact energy.

Figure 17. Cast 1.5 per cent Ni-Cr-Mo steel; oil quenched and tempered. Effect of section thickness on representative tensile properties of two steels.

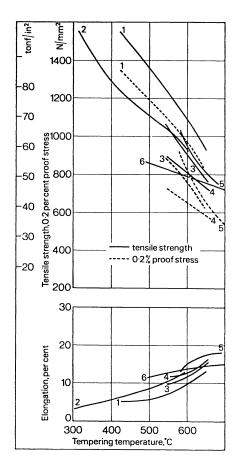
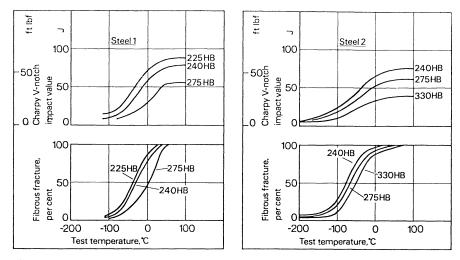
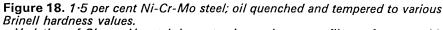




Figure 16. 1.5 per cent Ni-Cr-Mo steel.

Effect of tempering on the tensile properties of oil-quenched or normalized castings.

Steels 1 to 5 – oil quenched and tempered Steel 6 – normalized and tempered

Variation of Charpy V-notch impact value and per cent fibrous fracture with test temperature. Typical values of clover leaf castings of two steels, 32 mm $(1\frac{1}{4} \text{ in.})$ diameter leaf section size.

Steel 1 composition: 0-31C, 0-56Mn, 1-35Ni, 0-80Cr, 0-32Mo

Steel 2 composition: 0-35C, 0-60Mn, 1-90Ni, 0-82Cr, 0-34Mo

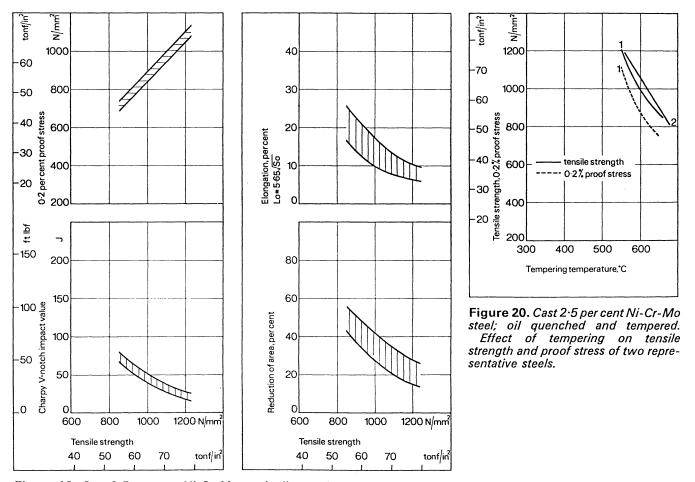


Figure 19. Cast 2.5 per cent Ni-Cr-Mo steel; oil quenched and tempered. Effect of tensile strength on representative values of proof stress, ductility and Charpy V-notch impact energy.

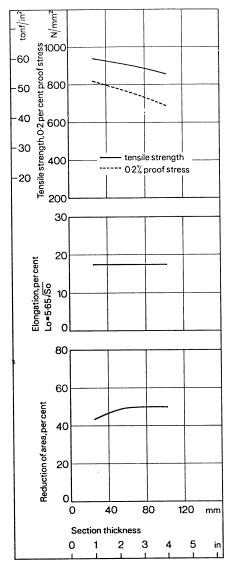


Figure 21. Cast 2.5 per cent Ni-Cr-Mo steel; oil quenched and tempered. Effect of section thickness on representative tensile properties.

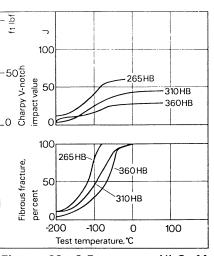


Figure 22. 2.5 per cent Ni-Cr-Mo steel; oil quenched and tempered to various Brinell hardness values.

Variation of Charpy V-notch impact value and per cent fibrous fracture with test temperature. Typical values of clover leaf castings, 32 mm $(1\frac{1}{4} \text{ in.})$ diameter leaf section size.

Steel composition 0.37C, 0.65Mn, 2.60Ni, 0.70Cr, 0.52Mo

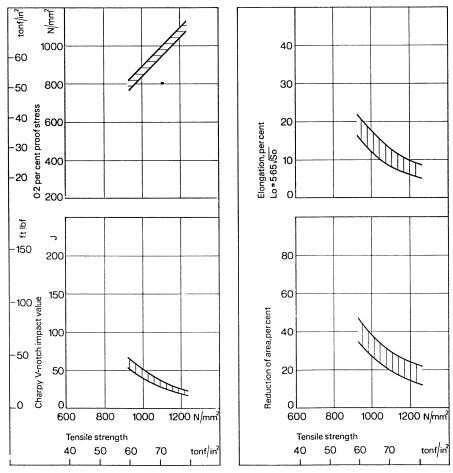
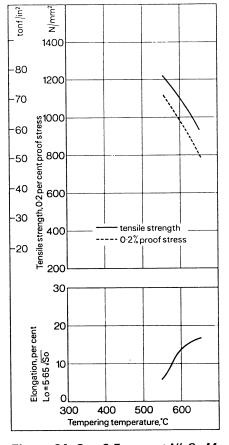
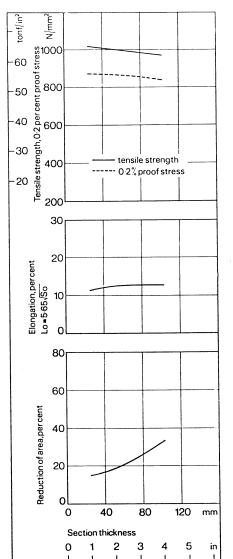
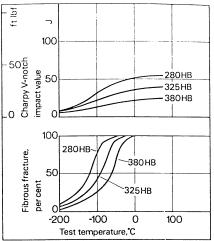
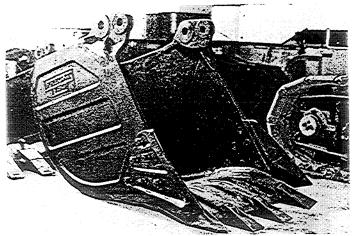




Figure 23. Cast 3.5 per cent Ni-Cr-Mo steel; oil quenched and tempered. Effect of tensile strength on representative values of proof stress, ductility and Charpy V-notch impact energy.

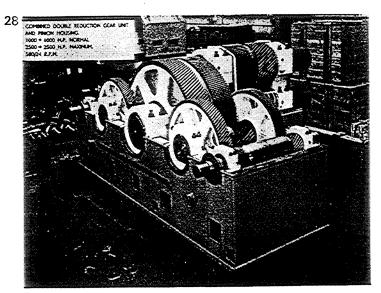
Figure 24. Cast 3.5 per cent Ni-Cr-Mo steel; oil quenched and tempered. Effect of tempering on the tensile properties of a representative steel.




Figure 26. 3.5 per cent Ni-Cr-Mo steel; oil quenched and tempered to various Brinell hardness values. Variation of Charpy V-notch impact value and per cent fibrous fracture with test temperature. Typical values of clover leaf castings, 32 mm $(1\frac{1}{4} \text{ in.})$ diameter leaf section size.

Steel composition 0.40C, 0.56Mn, 3.20Ni, 1.10Cr, 0.58Mo

Figure 25. Cast 3.5 per cent Ni-Cr-Mo steel; oil quenched and tempered. Effect of section thickness on representative tensile properties.


Location of data

		υк	France	Germany	Austria	Italy	India	USA
Specifications relating to use of nickel alloy cast steels	Table	1	1	1	1	1	1	1
		-	0∙6% Cr-Mo	1·5% Ni-Cr-Mo	2·5 Ni-Cr		-	5% r-Mo
Composition ranges of commercial grades	Table		2	2	2			2
Physical properties	Table		4	4	4			4
Mechanical Properties Tensile and impact	Figure	10	0, 11	14, 15	19	Э	2	3
Brinell hardness/tensile strength relationship	Figure		4	4	4			4
Effects of tempering on tensile properties	Figure		12	16	20	0	2	4
Effects of section size on tensile properties	Figure		13	17	2'	1	2	25
Impact energy value/per cent fibrous fracture/tensile strength relationships	Figure		2	2	2	2		2
Impact transition curves	Figure		_	18	2	2	2	26
Fracture toughness, K1c	Figure		_	1	· _	-	-	
Fatigue properties	Table Figure		3 5	3 5	5	-		5
Effects of section size on fatigue properties	Figure	7	, 8, 9			-	-	
Summary of typical mechanical properties	Table		5	5	5	5		5

Figure 27. 750 litre $(\frac{7}{8} c. yard)$ dragshovel bucket cast in 0.5 per cent Ni-Cr-Mo steel. (Courtesy of Priestman Brothers Limited, Hull, England). 27

Figure 28. Combined double reduction gear unit and pinion housing (shown with covers removed) fitted with 1.5 per cent Ni-Cr-Mo cast steel gears. (Courtesy of Power Plant Gears Limited, West Drayton, England).

30

Figure 29 & 30. Drilling machine (left) for piles of 600 to 1250 mm (2 to 4 ft) diameter contains many components (above) of cast 35 NCD4 steel (3.5 per cent Ni-Cr-Mo). (Courtesy of Acieries de Gennevilliers, Gennevilliers, France).

Figure 31. The clevis which fastens the ripper shank to the crossbeam of this tractor is cast in 0.5 per cent Ni-Cr-Mo steel. (Courtesy of Caterpillar Tractor Co.

Limited, Glasgow, Scotland).

31

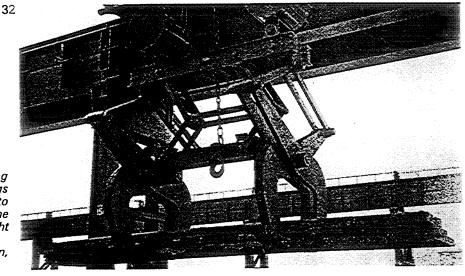
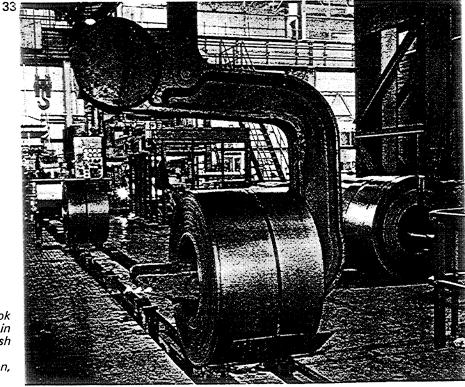



Figure 32. Steel mill slab handling tongs. The main limbs are flat castings in 1.5 per cent Ni-Cr-Mo steel to British Standard 1458–Grade A. The 'points' are fabricated from wrought steel and are hard-faced. (Courtesy of British Steel Corporation, Spencer Works, S. Wales).

Figure 33. This large 'C' hook handling coils of steel strip is cast in 1.5 per cent Ni-Cr-Mo steel to British Standard 1458–Grade B. (Courtesy of British Steel Corporation, Spencer Works, S. Wales).

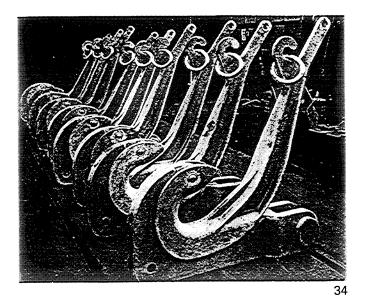


Figure 34. Quick-release hooks for ships' mooring buoys, cast in 1.5 per cent Ni-Cr-Mo steel to British Standard 1458–Grade A. (Courtesy of Brown, Lennox & Company Limited, Pontypridd, Wales).

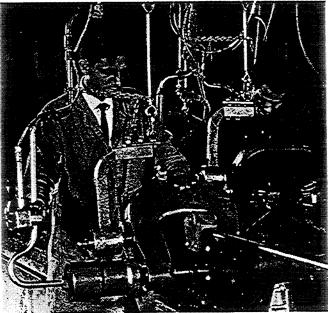


Figure 36. A 2.5 per cent Ni-Cr-Mo casting is used in this 'C' type rivetting anvil for the fabrication of truck frames. (Courtesy of Ford Motor Co. Ltd., Langley, England).

Figure 35. Component parts of a boxtype swivel for ships' gear and moorings. 1.5 per cent Ni-Cr-Mo cast steel eyes provide the extra strength required in the narrow section where the eye fits into the box.

(Courtesy of Brown, Lennox & Company Limited, Pontypridd, Wales).

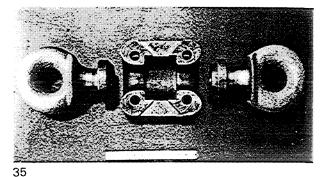
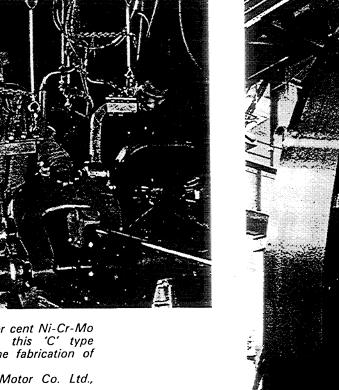



Figure 37. 7-metre (23 ft) diameter barrel ring for a 100-tonne Kaldo steel converter in 2.4 per cent Ni-Cr-Mo cast steel.

(Courtesy of Fried Krupp Hüttenwerke AG, Bochum).

36

37