18% NICKEL MARAGING STEEL – ENGINEERING PROPERTIES

A PRACTICAL GUIDE TO THE USE OF NICKEL-CONTAINING ALLOYS Nº 4419

> Produced by INCO

INCO

Distributed by NICKEL INSTITUTE

18% NICKEL MARAGING STEEL – ENGINEERING PROPERTIES

A PRACTICAL GUIDE TO THE USE OF NICKEL-CONTAINING ALLOYS Nº 4419

Originally, this handbook was published in 1981 by INCO, The International Nickel Company Inc. Today this company is part of Vale S.A.

The Nickel Institute republished the handbook in 2021. Despite the age of this publication the information herein is considered to be generally valid.

Material presented in the handbook has been prepared for the general information of the reader and should not be used or relied on for specific applications without first securing competent advice.

The Nickel Institute, INCO, their members, staff and consultants do not represent or warrant its suitability for any general or specific use and assume no liability or responsibility of any kind in connection with the information herein.

.....

Nickel Institute

communications@nickelinstitute.org www.nickelinstitute.org

Inco, the leading producer and marketer of nickel, conducts research and development programmes on nickel alloys, products and processes, establishing engineering and performance data. This knowledge is collated in a library of INCO databooks, which are freely available.

Conversion factors for stress and impact energy units

SI metric units have been adopted as the standard throughout this publication. To assist readers who may be more familiar with other units to which they have been accustomed, factors are given below for conversion of the more important of these to SI metric units and vice versa.

Stress units:

15.44 N/mm ²
9.807 N/mm ²
6.895 N/mm ²
0.0647 tonf/in ²
or 0.102 kgf/mm ²
or 0.145 10 ³ lbf/in ²
or 0.1 hbar

1 GN/m² = 1 GPa or 1 KN/mm² or 0.145 10⁶lbf/in² or 0.102 10³kgf/mm² or 100 hbar

Note that the newton per square millimetre (N/mm^2) , meganewton per square metre (MN/m^2) and megapascal (MPa) SI units of stress are arithmetically identical.

Impact energy units:

 $\begin{array}{l} \text{1 ft lbf} = 1.356 \text{ J} \\ 1 \text{ kgf m} = 9.807 \text{ J} \\ 1 \text{ J} &= 0.7375 \text{ ft lbf} \\ \text{ or } 0.102 \text{ kgf m} \\ 1 \text{ J} (Charpy V impact) &= 0.1275 \text{ kgf m/cm}^2 \\ 1 \text{ J} (Charpy U impact) &= 0.2039 \text{ kgf m/cm}^2 \\ 1 \text{ J} (DVM impact) &= 0.1457 \text{ kgf m/cm}^2 \\ 1 \text{ J} (Mesnager impact) &= 0.1275 \text{ kgf m/cm}^2 \end{array}$

Plane strain fracture toughness

INCO is a trademark.

18 per cent nickel maraging steels

Engineering properties

Contents

Introduction	3
Commercial and national specifications	3, 5–9
Melting practice	3–4
Mechanical properties	4, 10–21
Physical properties	17–18
Processing and forming	
Hot working	17–19
Cold working	19–20
Heat treatment	20–21
Dimensional stability	21–22
Nitriding	22
Welding and joining	22–26
Machining and grinding	26–27
Descaling and pickling	27–28
Corrosion characteristics	28
Stress-corrosion characteristics	28–29
Electroplating and surface coating	29

The information and data in this publication are as complete and accurate as possible at the time of publication. The characteristics of a material can vary according to the precise method of production, fabrication and treatment. Wherever available, full details of the condition of the test pieces are included. As these data are derived from various sources, suppliers of materials should always be consulted concerning the specific characteristics of their products.

© Copyright 1976

Inco Europe Limited

The 18 percent nickel maraging steels Engineering properties

Introduction

The development of the nickel maraging steels began in the Inco research laboratories in the late 1950s and was based on the concept of using substitutional elements to produce age-hardening in a low-carbon iron-nickel martensitic matrix. Hence the term 'maraging' was given to them to signify this strengthening mechanism.

The work led to the discovery that balanced additions of cobalt and molybdenum to iron-nickel martensite gave a combined age-hardening effect appreciably greater than the additive effects of these elements used separately. Furthermore, the iron-nickel-cobalt-molybdenum matrix was found to be amenable to supplemental agehardening by small additions of titanium and aluminium. Thus the 18 per cent nickelcobalt-molybdenum family of maraging steels was developed.

There are basically four wrought commercial maraging steels of the 18 per cent nickel family and one cast grade currently available from special steel manufacturers. The nominal compositions and 0.2 per cent proof stress values are presented in Table 1. The reader should note that the numbers ascribed to the various grades in this publication correspond to the nominal proof stresses given in SI units, whereas the identical grades in some countries have designations with lower numbers corresponding to the units traditionally used for proof stress values, e.g., in the U.S.A. the maraging steel numbers refer to the nominal 0.2 per cent proof stress values in kilopounds/inch².

These steels have been designed to develop high proof stress with optimum toughness for the various strength levels. In contrast to conventional ultra-high-strength alloy steels in which carbon is an essential constituent and the formation of hard carbon-martensite is necessary for the development of high strength, nickel maraging steels have a very low carbon content and their high strengths are derived by age-hardening of relatively soft lowcarbon martensite. In consequence, the toughness of the maraging steels is distinctly superior to that of conventional steels at the same strength levels, as shown for example by the comparison of notched tensile strengths of the several steels illustrated in Figure 1.

Because the physical metallurgy and properties of maraging steels are unique they have many commercial advantages which are summarized in Table 2 (*page 4*). Since the production of the first commercial heat in December, 1960 the range of applications has steadily grown and is ever widening. A sample of typical applications is given in Table 3 (*page 4*).

Commercial and national specifications

The composition ranges developed by Inco to provide several combinations of properties are detailed in Table 4 (*page 4*). These have formed the basis for commercial production throughout the world with minor variations sometimes being adopted in the manufacture of proprietary designated grades and in some authoritative specifications. Tables 5 and 6 (*pages 5–9*) summarize the requirements of several commercial specifications used in various countries as national and international standards.

3400 18Ni 1900 3000 18Ni1700 2600 6 ,18 Ni1400 2200 AISI 4340 (1'2% Ni-Cr-Mo steel) Notched tensile strength, N/mm² 1800 1400 AISI 5140 (0.8%Cristeel) 1000 AISI 1340 (1.7% Mnsteel) 600 1600 800 1200 2000 Tensile strength, N/mm²

Figure 1. The toughness of maraging steels is demonstrated by their adherence to the relationship Notched tensile strength/Tensile strength — 1.5, up to higher strength levels than for conventional steels.

Melting practice

Nickel maraging steels are generally produced by vacuum melting, or by a double melting and refining procedure involving both air and vacuum melting, while double vacuum melting is often employed. Whatever the process the objective is (i) to hold composition within the prescribed limits with close control over impurities, (ii) minimize segregation, (iii) obtain a low gas content and a high standard of cleanliness. The degree to which these objectives are reached will influence the toughness and to some extent the strength of finished mill products.

Small amounts of impurities can decrease the toughness significantly. In particular sulphur should be kept as low as possible and silicon and manganese must not exceed a combined level of 0.2 per cent. The elements P, Pb, Bi, O₂, N₂ and H₂ are all maintained at low levels in good melting practice.

Ingot sizes and shapes and pouring practice should be selected to ensure Sound ingots with minimum alloy segregation.

Table 1. Nickel ma	raging steels.
--------------------	----------------

Туре	N	ominal ().2% pro	of stress	Nominal composition. Weight %					
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N/mm²	N/mm ² 10 ³ lbf/ tonf/ in ² in ²		kgf/ mm²	kgf/ hbar mm ²		Co	Мо	Ti	AI
18Ni1400 18Ni1700 18Ni1900 18Ni2400 17Ni1600(cast)	1400 1700 1900 2400 1600	200 250 280* 350 230	90 110 125 155 105	140 175 195 245 165	140 170 190 240 160	18 18 18 17.5 17	8.5 8 9 12.5 10	3 5 3.75 4.6	0.2 0.4 0.6 1.8 0.3	0.1 0.1 0.15 0.05

* This steel is generally designated the 300 ksi grade in the U.S.A.. the 0.2 per cent proof stress normally ranging from 260,000 to 300,000 lbf/in².

Table 2. Advantages of nickel maraging steels.

Excellent Mechanical Properties	Good Processing and Fabrication Characteristics	Simple Heat Treatment										
 High strength and high strength-to-weight ratio. High notched strength. Maintains high strength up to at least 350°C. High impact toughness and plane strain fracture toughness. 	 Wrought grades are amenable to hot and cold deformation by most techniques. Work- hardening rates are low. Excellent weldability. either in the annealed or aged conditions. Pre-heat not required. Good machinability. Good castability. 	 No quenching required. Softened and solution treated by air cooling from 820–900°C. Hardened and strengthened by ageing at 450–500°C. No decarburization effects. Dimensional changes during age hardening are very small – possible to finish machine before hardening. Can be surface hardened by nitriding. 										

Table 3. Typical applications.

Aerospace	Tooling and Machinery	Structural Engineering and Ordnance
Aircraft forgings (e.g., undercarriage parts. wing fittings).	Punches and die bolsters for cold forging.	Lightweight portable military bridges.
Solid-propellant missile	Extrusion press rams and mandrels.	Ordnance components.
Jet-engine starter impellers.	Aluminium die-casting and extrusion dies.	rasteners.
Aircraft arrestor hooks.	Cold reducing mandrels in tube production.	
Torque transmission shafts.	Zinc-base alloy die-casting dies.	
Aircraft ejector release units.	Machine components: gears index plates lead screws	

Table 4. Composition ranges – weight per cent – of the 18 per cent Ni-Co-Mo maraging steels.⁽¹⁾

		Wrought									
Grade	18Ni1400	18Ni1700	18Ni2400	17Ni1600							
Nominal 0.2% proof stress N/mm ² (MPa) tonf/in ² 10 ³ lbf/in ² kgf/mm ² hbar	1400 90 200 140 140	1700 110 250 175 170	1900 125 280 ⁽²⁾ 195 190	2400 155 350 245 240	1600 105 230 165 160						
Ni Co Mo Ti AI C max. Si max. Si max. Si+Mn max. S max. P max. Ca added B added Zr added Fe	17-19 8.0-9.0 3.0-3.5 0.15-0.25 0.05-0.15 0.03 0.12 0.20 0.010 0.010 0.010 0.05 0.003 0.02 Balance	17-19 7.0-8.5 4.6-5.1 0.3-0.5 0.05-0.15 0.03 0.12 0.20 0.010 0.010 0.010 0.05 0.003 0.02 Balance	18–19 8.0–9.5 4.6–5.2 0.5–0.8 0.05–0.15 0.03 0.12 0.20 0.010 0.010 0.010 0.05 0.003 0.02 Balance	17-18 12-13 3.5-4.0 1.6-2.0 0.1-0.2 001 0.10 0.10 0.20 0.005 0.005 none none Balance	16-17.5 9.5-11.0 4.4-4.8 0.15-0.45 0.02-0.10 0.03 0.10 0.10 0.20 0.010 0.010 none none none Balance						

 The composition ranges given are those originally developed by Inco which broadly cover current commercial practice. Slight changes in these ranges have been made in some national and international specifications.
 See footnote of Table 1.

Castings

The 17Ni1600 grade developed for castings has slightly different composition compared with the wrought grades (see Tables 1 and 4) in order to minimize retention of austenite that might otherwise occur in more highly alloyed regions of the structure due to micro-segregation which tends to persist in the absence of hot working. This steel has good fluidity and pouring temperatures much higher than 1580°C are generally not desirable if segregation is to be minimized.

Mechanical properties of wrought maraging steels

The usual heat treatment applied to the 18Ni1400, 1700 and 1900 grades of maraging steels comprises solution annealing at 820°C followed by ageing 3 hours at 480°C. Similar annealing is applied to the 18Ni2400 steel, but ageing is effected by heating for 3 hours at 510°C or longer times at 480°C. The normally expected mechanical properties after these treatments are given in Table 7 (*page 10*) while Tables 8–11 (*pages 10–11*) present typical mechanical test data for material of various section sizes obtained from production casts.

Elastic and plastic strain characteristics

The uniaxial tensile deformation behaviour of maraging steels is shown by the stress-strain and true stress-true strain curves of Figs. 2 and 3 (*page 11*), respectively. Plastic yielding occurs at stresses of the order of 95 per cent of the ultimate tensile stress. The strain hardening moduli of maraging steels subjected to plastic strain are:

5	1
Steel Type	Strain Hardening Modulus
18Ni1400	724 N/mm ²
18Ni1700	758 N/mm ²
18Ni1900	793 N/mm ²
18Ni2400	827 N/mm ²

Fracture toughness

The ability of metallic alloys to resist rapid propagation of a crack or unstable fracture originating at an imperfection (i.e., brittle fracture), particularly in materials of high strength, is of great importance in determining their utility for engineering purposes. As with other high-strength alloys, various methods have been employed to evaluate the fracture characteristics of maraging steels with the results described in the sections on pages 10 and 12.

Table 5.	18 per cent nicke	I maraging steels.	Chemical com	positions quoted	l in national and	d international	specifications.
----------	-------------------	--------------------	--------------	------------------	-------------------	-----------------	-----------------

Country	Specifying	Specification	Method of	Form of	Composition, per cent							
	body		manufacture	product	Ni	Co	Мо	Ti	C max.	Other		
United Kingdom	Ministry of Technology. Aerospace Material	DTD 5212 (Jan. 1969)	Double vacuum melted (induction + vacuum arc remelt)	Billets Bars Forgings	17.0-	7.0–	4.6-	0.30-				
	Specification.	DTD 5232 (Aug. 1969)	Single vacuum melted (air melt + vacuum arc remelt)		19.0	8.5	5.2	0.60	0.015	a, c, d		
International	Association Internationale des Constructeurs de Material Aerospatiale	AICMA– FE–PA95 (provisional recommenda- tion Dec. 1965)	Vacuum melted or vacuum remelted	Bars Plates Forgings	17.0– 19.0	7.5– 8.5	4.6– 5.2	0.30– 0.50	0.03	a, b		
Germany	Normenstelle Luftfahrt. (Aeronautical standards)	l.6359 (Nov. 1973)	Consumable electrode remelt	Sheet Plate Bars Forgings	17.0– 19.0	7.0– 8.5	4 6– 5 2	0.30- 0.60	0.03	a, c		
		l.6354 (Nov. 1973)	Consumable electrode remelt	Bars Forgings	17.0– 19.0	8.0– 9.5	4.6– 5.2	0.60- 0.90	0.03	a, c		
		I.6351 (Draft specification Aug. 1973)	Melted and cast under argon or vacuum* (Shaw or precision casting methods)	Precision castings	16.0– 18.0	9.5– 11.0	4.5– 5.0	0.15– 0.45	0.03	a, c		
U.S.A.	A.S.T.M.	A538-72a: Grade A	Electric furnace air melt.	Plates	17.0– 19.0	7.0– 8.5	4.0– 4.5	0.10– 0.25	0.03	a, e		
		Grade B	/ remelt. Air – or vacuum –		17.0– 19.0	7.0– 8.5	4.6– 5 ⁻ 1	0.30- 0.50	0.03	a, e		
		Grade C			18.0– 19.0	8.0– 9.5	4.6– 5.2	0.55– 0.80	0.03	a, e		
		A579-70: Grade 71	Electric arc air melt.	Forgings	17.0– 19.0	8.0– 9.0	3.0– 3.5	0.15– 0.25	0.03	a, f		
		Grade 72	induction melt.		17.0– 19.0	7.5– 8.5	4.6– 5.2	0.30– 0.50	0.03	a, f		
		Grade 73	or combination of these		18.0– 19.0	8.5– 9.5	4.6– 5.2	0.50– 0.80	0.03	a, f		
	S.A.E. Aerospace	AMS 6512 (May 1970)	Vacuum arc remelt or	Bars Forgings	17.0– 19.0	7.0– 8.5	4.6– 5.2	0.30– 0.50	0.03	a, e, g		
	Specification	AMS 6514 (May 1970)	electrode remelt in air using	Rings	18.0– 19.0	8.5– 9.5	4.6– 5.2	0.50– 0.80	0.03	a, e, g		
		AMS 6520 (May 1969)	melted electrodes	Sheet Strip Plate	17.0– 19.0	7.0– 8.5	4.6– 5.2	0.30- 0.50	0.03	a, e, g		
		AMS 6521 (May 1969)			18.0– 19.0	8.5– 9.5	4.6– 5.2	0.50– 0.80	0.03	a, e, g		

Casting in air may be adopted if agreed between supplier and purchaser.
a. Si 0.10 max. Mn 0.10 max. S 0.010 max, P 0.010 max. Al 0.05–0.15.
b. B 0.003 max, Zr 0.02 max.
c. Ca, B and Zr may be added in amounts of 0.05 per cent max, 0.003 per cent max, and 0.02 per cent max, respectively.
d. Cr 0.25 max (DTD 5212) and 0.20 max (DTD 5232).
e. The following specified additions shall be made to the melt: B 0.003 per cent. Zr 0.02 per cent and Ca 0.05 per cent.
f. The following specified additions shall be made to the melt: B 0.003 percent. Zr 0.02 percent and Ca 0.06 percent.
g. Cr 0.5 max. Cu 0.50 max.

se
Ň
e,
ŧ
0
pé
аtе
stć
s
a
pt
g
X
S C
je je
ηl
Υŝ
Е
ň
Ë
1in
Ś
10
ςγ (μ
эle
al
Г
<u>.</u>
q
ite
lis
S
UC.
ť
Ga
ifi
U S C
рe
S
he
h ti
.5
p
zte
nc
9
Se
ťi
er
dc
лc
1
Ca
ic.
ja,
C
Лe
<
ls.
9e
ste
б
2
зg.
ЗĽ
ηć
11
A B
<u>0</u>
2
nt
e,
r c
ЭС
3 4
18
<u>ن</u>
0
Ť
at
-

Radius for	test		I			I		I			I			I				I		I	≤ 3 × thickness for plate ≤ 8 mm thick	
an	kgf/ cm²		I		1 1		4(a) 2(a)	I		1 1		3(a)	2(a)			4		I		+4	I	
ergy val	ft Ibf		I	+	18 8		11	I	+	12 6	6 6	I	I			I		I		I	I	
pact ene	٦		I		24 11	J/cm ²	39 20	I		16 8	J/cm ²	29	20		J/cm²	39		I		20	I	
<u>E</u>	Test- piece		I	lzod	Longit. Transv.	KCU	Longit. Transv.	I	lzod	Longit. Transv.	kcu	Longit.	Transv.			KCU Longit.		I		KCU Longit.	I	
tion of a %	Transv.		I			25		I			20	•	•			I		I		25	I	
Reduct	Longit.		I			40		I			35					45		I		40	I	
ation	Transv.	65 / So	I		I	5		I			4					I		I		4	I	
Elong %	Longit.	Lo = 5.(I			ω		I			9					œ		I		9	2	
	JSV.	† h bar	I		180-	200		I		180-	200					I		I		I	I	
strength	Trar	N/mm² (MPa)	I		1800-	2000		I		1800-	2000					I		I		I	I	
Tensile	ıgit.	† h bar	Ι		180-	200		I		180-	200			† kgf∕ mm²		175– 195		I		175– 195	175– 195	
	Lon	N/mm² (MPa)	I		1800-	2000		I		1800– 2000			1800– 2000		-2000 2000 1720- 1910			1720– 1910	1720– 1910			
(A)	JSV.	† h bar	I		1	170		I			170					I		I		I	I	
of stres	Trai	N/mm² (MPa)	Η			UU/ [I			1700					I		Ι		I	I
.2% pro	git.	† h bar	I		į	170		I			170			t kgf∕		165		I		165	165	
0	Lon	N/mm² (MPa)	I			1700		I			1700			1620			۱ 	_	1620	1620		
Hardness			≤ 321HB ≤ 355HV		520-	620HV		≤ 321HB ≤ 335HV		520-	620HV					I	331HB max	350HB max.	I	I	I	
Heat	condition		S.A. 810°– 830°C		S.A. 810°- 830°C +	≥ 3h 475°-	00 ⁻ 00	S.A. 810°– 830°C		S.A. 810°– 830°C+	3h 475°-	485°C			S.A. 810°– 830°C+	3h 475°– 485°C		S.A. 810' 830°C (as-supplied)		S.A. 810°– 830°C+ 3h 475°– 485°C	S.A. 810°– 830°C+ 3h 475°– 485°C	
Form of	Floquet		Billets	Bars Forgings))		<u>.</u>	Billets	Bars	Sars Forgings 3 3 4 4				Bar test- coupon,	16 mm dia.	Bars	Plates	Forgings	Bar ≤ 100 mm dia. Forgings	Plate ≤ 10 mm thickness		
Specification			DTD5212					DTD5232	מ וג					AICMA-			•			•		

	3 × thickness for sheet or plate ≤ 8 mm thick (transv. test)			1	1		1	
	1						1	I
	1			1	i i		1	ا نبر
	I			1	+ J 30 Long Long Z0 Trans		I	+ J 20 Long
	I		1 1 1	I	DVM		I	DVM
	I		1 1 1	I	25		I	20
	I		1 1 1	I	40		I	30
	I	Lo = 50 mm	5 4 3	I	5 ⁄ So 4	5VSo	I	3.5
	I			1	6 6	Lo = 5.6	I	4.5
	I		I	I	I		I	I
† N/mm² (MPa)	I		1720	I	1720	† N/mm² (MPa)	I	1960
	I		I	I	I		I	I
† N/mm² (MPa)	I		I	I	1720	† N/mm² (MPa)	I	1960
	Ι		I	I	I		1	I
† N/mm² (MPa)	Ι		1620	I	1620	† N/mm² (MPa)	I	1910
	Ι		I	I	I		1	I
† N/mm² (MPa)	I		I	I	1620	† N/mm² (MPa)	I	1910
	≤ 350HV	_	(480 HV)	≤ 353HB	(480 HV)		≤ 353HB	(542 HV)
	S.A. 810°- 830°C, air-cooled		S.A. and aged 3h 470°–490°C air-cooled	S.A. 810° 830°C, air-cooled	S.A. and aged 3h 470°-490°C, air-cooled		S.A. 810°– 830°C, air-cooled	S.A. and aged 3–5h 480°–500°C,
Sheet 0.5–6.0mm	thickness Plate $> 6 \le 10mm$ thickness (cold- or hot- rolled, polished or descaled)	Sheet and plate:	2-3 mm thick > 3 ≤ 6 mm > 6 ≤ 10 mm	Bar 2–100 mm dia. Forgings ≤70 mm thickness	Bar 2–100 mm dia. Forgings ≤ 70 mm thickness		Bar 2–100 mm dia. Forgings ≤ 70 mm thickness	Bar 2−100 mm dia. < 70 mm
Normenstelle Lultfahrt I.6359: Werkstoff Nr.	1.6359.9	Werkstoff Nr. I.6359.4		Werkstoff Nr. I.6359.9	Werkstoff Nr. I.6359.4	Normensielle Luftfahrt I.6354:	Werkstoff Nr. I.6354.9	Werkstoff Nr. I.6354.4

Table continued on pages 8 & 9

	Radius for 180° hend	test							I		I	I	I		I	I	I
	ne	kgf/ cm²				_			I		I	I			I	I	I
	ergy val	ft Ibf				V-notch			I		I	I	V -notch	ftlbf	35	20	15
	pact en	٦				Charpy	J (16)	(14)	I		I	I	Charpy	+ 7	48	21	20
	<u></u>	Test- piece							I		I	I			I	I	ı
	tion of a %	Longit.					0			40(c) 35(d)	35(c) 30 ^(d)	30(c) 25(d)			I	I	I
	Reduc	Transv.	uodn				5	ω		40(c) 35(d)	35(c) 30 ^(d)	30(c) 25(d)			55	45	40
	ation	Longit.	t test co	35 √So					2 in. mm	ω	9	9	35 V So		I	I	I
	Elong %	Longit.	om cast	Lo = 5.6	(8)		4	с С	Lo = $or 50$	8	9	9	Lo = 5.6		12	10	6
		SV.	ained fr						† 10 ³ lbf/ in²	210	240	280			I	I	I
	trength	Tran	iece obt	(MPa)	6		Q	g	† N/mm² (MPa)	1450	1650	1930			I	I	I
	ensile s	git.	Test-p	√mm² †	06)		160	160	10 ³ lbf/ in ²	210	240	280			210	255	280
	H	Long		2					+ √/mm² (MPa)	1450	1650	1930			1450	1760	1930
ľ		sv.							+ 10 ³ lbf/ l in ²	200- 235	230- 260	275- 305			I	I	I
	of stress	Tran		(MPa)	<u> </u>		0	Q	+ √/mm² (MPa)	1380- 1620	1580- 1790	1900- 2100			I	I	I
	2% proc	it.		J/mm² †	(600		14.5	145	1 0 ³ lbf/ n in ²	235	230-	215- 2 305 2			200	250	275
	0	Long		2					+ √/mm² 1 (MPa)	1380- 1620	1580- 1790	1900-			1380	1725	1800
	Hardness	I		<u> </u>	(≤ 32 HRC)					I	I	I			I	I	I
	Heat treatment	condition			Homogenized 1150° ± 15°C, air-cooled		Homogenized and aged	3 n 475~– 495°C, an-cooled		S.A. 815°– 982 C ^(b)	+ 3h 468°-	500°C				S.A. and aged	
	Form of Product				Un-machined castings ≤ 50 mm section thickness		Finished cast parts ≤ 25 mm	> 25 ≤ 50mm section thickness		Plate	Plate	Plate			Forgings	Forgings	Forgings
	Specification		Normensteile	с иттапт I.6531;	Werkstoff Nr. I.6531.9		Werkstoff Nt. I.6531.4		AS TM A538-72a:	Grade A	Grade B	Grade C		ASTM A579-70 ^(e) :	Grade 71	Grade 72	Grade 73

Table 6. continued

I			I	I	I			1	I	I	I	I	Ι	shall be
														est-piece
I			I	11	1 1			I	are aser	rength ∋d	I	s are	Ð	iameter ti
Ι	/-notch	† ftlbf	10	8 6	6 4			I	ss values en purcha	AS I M or high st suggeste	I	ss value	ted abov	2.7 mm) d
I	Charpy \	٦	14	11 8	5			I	toughnes ad betwee	tor. The / tch test fr tterials is	I	toughne	ed as sta	1 05 in (1;
Ι	0		Longit.	Longit. Transv.	Longit. Transv.			I	Fracture negotiate	and venc sharp-no sheet ma	I	Fracture	negotiate	a standarc
I			I	25 -	20 -			I	I	I	Ι	I	I	(19 mm)
I			30	30	25			I	I	I	I	I	I	s > 0.75 ir
I			I	4	2			I	I	(â)	I	I	(ĝ)	e thicknes
I			5	2	4			I	(B)	Ι	Ι	(B)	I	ce. for plat
Ι		+	Ι	280	275		+	I	Ι	255	I	Ι	280	d test-piec
I			Ι	1930	1900	dor.		I	I	1760	I	Ι	1930	c) Roun
I		+	280	280	275	and vend	+	I	255	I	I	280	I	
I			1930	1930	1900	chaser a		I	1760	I	I	1930	I	
I		+	I	270	270	en purc	+	I	I	245	I	I	270	
I			I	1860	1860	ed betwe		I	I	1690	I	I	1860	
I		+	270	270	270	be agree	+	I	245	I	I	270	I	
Ι			1860	1860	1860	to		I	1690	Ι	I	1860	Ι	
<34HRC <321HB†				>52HRC† >560HV			<34HRC†	<321HB	>48HRC†	>500HV	<34HRC† <321HB	>50HRC†	>530HV	conversion.
S.A.816°– 927°C			S.A.816°–	927°C + 3–6h	477°–488°C		S.A.802°–	830°C	S.A. 802°– 830°C +	3−5 h 471°−488°C	S.A.802°– 830°C	S.A. 802°– 830°C +	3–5 h 477°−488°C	been obtained by c
Bars Forgings Tubes	Rings	Cross-section Thickness:	< 2.5 in. (64 mm	2.5–4.0 in. (64–102 mm)	4.0–10.0 in. (102–254 mm)	> 10.0 in. (254 mm)	Sheet Strip	Plate	≤ 9 in. wide (229 mm)	> 9 in. wide (229 mm)	Sheet Strip Plate	≤ 9 in. wide (229 mm)	< 9 in. wide (229 mm)	ie. Other values have
SAE AMS 6512							SAE	AMA 520			SAE AMS 6521			Specified valu

S.A. Solution annealed.

- () figures in parentheses are approximate values to be expected.
- The KCU test is not a mandatory requirement of the specification, but impact values which may be expected are quoted in the specification for guidance. (a)
- A double solution anneal is permissible. It is recommended that the lowest temperature is used, within the range specified. which will effect recrystallization at the mid-thickness position. q
- used. for plate thickness ≤ 0.75 in (19 mm) sub-size round test-pieces or rectangular test-pieces may be used.
- Vacuum melting is normally required to achieve the listed properties, The indicated 0.2 per cent proof stress values can usually be achieved at a depth = ¼ thickness in section sites up to 12 in (305 mm) in the direction of maximum hot- working. Because of variations in forging configuration and processing it does not follow that the ductifity and impact strengths listed can always be obtained at these depths. (e)
- Lo = $5.65\sqrt{\text{So for plate}}$. Ð
- The minimum elongation value specified varies according to the thickness of the product and the test-piece gauge length as shown in the table below: (g)

Product thickness:								
inch†	<0.030	0.030-0.045	>0.045-0.065	>0.065-0.090	>0.090-0.125	>0.125-0.250	>0.250-0.375	>0.375
mm	<0.8	0.8-1.1	>1.1–1.6	>1.6-2.3	>2.3–3.2	>3.2-6.4	>6.4-9.5	>9.5
			2	1inimum elong	ation, per cen	t		
Test-piece gauge length: 2 in. (51 mm) or 4D	Ι	I	I	2.5	3.0	4.0	5.0	6.0
1 in. (25 mm)	I	I	2.0	5.0	6.0	8.0	I	I
0.5 in. (13 mm)	1.0	2.0	I	ļ	I	ļ	I	I

 Table 7. Mechanical properties of wrought 18 per cent nickel maraging steels.

Property	18Ni1400	18Ni1700	18Ni1900	18Ni2400
		Solution-annea	aled 1 h 820°C	
0.2% proof stress, N/mm ² Tensile strength, N/mm ² Elongation, Lo= $4.5 \sqrt{S_0}$, % Reduction of Area, % Hardness, HRC	800 1000 17 79 27	800 1010 19 72 29	790 1010 17 76 32	830 1150 18 70 35
	Solution-an	nealed 1h 820°C, age	d 3h 480°C	Solution-annealed 1h 820°C, aged 12h 480°C
	Nor	rmal ranges of proper	ties	Typical properties
0.2% proof stress, N/mm ² Tensile strength, N/mm ² Elongation, Lo= $4.5 \sqrt{So.}$, % Reduction of Area, % Modulus of Elasticity (E), GN/m ² Modulus of Rigidity (G), (torsional shear), GN/m ² Hardness, HRC Charpy V-notch impact value, J(daJ/cm ²) Poissons ratio Notched tensile strength (Kt =10) N/mm ² (Kt= 3.5) N/mm ²	1310–1550 1340–1590 6–12 35–67 181 - 44–48 35–68 (4.4–8.5) 0.264 2390 -	1650–1830 1690–1860 6–10 35–60 186 71–4 48–50 24–45 (3.0–5.6) 0.30 2350–2650 –	1790-2070 1830-2100 5-10 30-50 190 - 51-55 16-26 (2.0-3.3) 0.30 2700-3000 -	2390 2460 8 36 191–199 74.5 56–59 11 (1.4) 0.26 1430 2700

Table 8. Typical mechanical properties of double vacuum melted 18Ni1400 managing steel. (Solution-annealed and aged 3h 480°C. except as stated otherwise)

(,	-1		/	
Section Size	Direction of test	0.2% proof stress	Tensile Strength	Elong. Lo = 5.65√So	R of A	Charpy impac	V-notch t value
		N/mm ²	N/mm ²	%	%	J	daJ/cm ²
150 × 150mm	Longit.	1450	1480	12	65	81	10.1
$150 imes 150 mm^*$	Longit.	1510	1540	12	64	91	11.4
100 imes 100 mm	Longit.	1420	1470	12	68	73	9.1
$100 \times 100 mm^*$	Longit.	1450	1510	13	67	92	11.5
75 imes 75mm	Longit.	1420	1450	13	70	115	14.4
150 × 150mm	Transv.	1390	1470	10	55	38	4.8

1510

10

55

35

4.4

*Aged 10h 460/465°C (Data by courtesy of Firth Brown Limited, Sheffield, U.K.)

Transv.

1450

Table 9.	Typical	mechanical	properties	of	double	vacuum	melted	18Ni1700
managing	steel.							
(Solution-	anneale	d and aged 3	3h 480°C)					

Section Size	Direction of test	0.2% proof stress Nrmm ²	Tensile Strength N/mm ²	Elong. Lo = 5.65√So %	R of A %	Izod impact value J
300 x 300mm 125mm dia. 100mm dia. 75mm dia. 100mm dia. 75mm dia. 50mm dia. 25mm dia. 13mm dia.	Transv. Transv. Transv. Longit. Longit. Longit. Longit. Longit.	1730 1750 1780 1800 1820 1840 1730 1730 1800	1860 1860 1860 1980 1960 1860 2000 1960	7 7 6 5 9 9 10 12 12	35 35 30 50 55 55 55	20 20 16 14 27 41 41 41 47 47

(Data by courtesy of Firth Brown Limited. Sheffield, U.K.)

150 × 150mm-

Impact transition temperature

The temperature range of transition from ductile to brittle fracture in notched impact tests conducted at various temperatures, and the corresponding change in impact energy absorption values, provide a comparative assessment of the fracture behaviour of various materials. In the case of maraging steels the fall in energy absorption values with decreasing temperature is small and gradual with useful toughness being retained at low temperatures, as shown in Figure 4. This lack of an abrupt transition in impact energy absorption with fall of temperature is a significant measure of the relatively high resistance of these steels to unstable fracture propagation.

Notched tensile properties

18 per cent Ni managing steels exhibit high ratios of notched tensile strength to tensile strength, these being unobtainable in conventional steels at the same high strength levels. Figure 5 presents notched tensile data for bar and sheet. In general, longitudinal tests on bar material of the 18Ni1400, 1700 and 1900 grades give NTS/UTS ratios of about 1.5. Deviations below that value shown for the 18Ni1700 and 18Ni1900 steels are, in general, from the transverse direction of large forgings. The values for sheet follow a ratio of about 1.0, although lower ratios may be obtained depending on processing variables. Notched tensile strengths of sheet at temperatures as low as -196°C are only 10-20 per cent lower than the room-temperature values. This retention of high notched tensile strength at low

Figure 2. Tensile stress-strain curves of maraged steels.

Figure 4. Charpy V-notch impact value of 18% nickel maraging steels as a function of test temperature.

Figure 5. Notched tensile/tensile strength ratios of maraging steels in bar and sheet form.

Figure 3. True stress-true strain curves of maraged steels.

Table 10. Typical mechanical properties of double vacuum melted 18Ni1900 maraging steel. (Solution-annealed and aged 3h 480°C, except as stated otherwise)

Section Size	Direction of test	0.2% proof stress N/mm ²	Tensile Strength N/mm ²	Elong. Lo = 5.65√So %	R of A %	Izod impact value J
200mm dia.	Transv.	1930	2030	4	25	9.5
125mm dia.	Transv.	1930	2020	4	20	11
115mm dia.	Transv.	2080	2140	6	25	16
280 imes 100 mm	Transv.	1910	1970	5	25	-
250 × 57mm *	Transv.	1970	2000	8	35	-
190 imes 38 mm	Transv.	2020	2120	4	25	13.5
200 imes 19 mm	Transv.	2020	2140	6	35	16
70 imes 70mm	Transv.	1970	2020	4	25	-
83mm dia.						
\times 44mm thick	Tangential	1970	2020	9	50	16
280 imes 100mm	Longit.	1950	2010	10	45	-
60 imes 60mm	Longit.	2000	2040	8	55	-
19mm dia.	Longit.	2010	2170	8	50	27

* Aged 3h 500°C. (Data by courtesy of Firth Brown Limited, Sheffield, U.K.)

Table 11. Typical mechanical properties of double vacuum melted 18Ni2400 maraging steel. (Solution-annealed 1h 820°C air cooled, and aged 6h 500°C)

Section Size	Direction of test	0.2% proof	Tensile Strength	Elong. Lo = $5.651/So$	R of A	Charpy impac	V-notch t value
		N/mm ²	N/mm ²	3.03 / 30 %	%	J	daJ/cm ²
250 imes 250mm	Longit.	2390	2470	6	31	5	0.6
250mm dia.	Longit.	2390	2490	5	24	_	-
105 imes 105 mm	Longit.	2380	2440	7	34	8	1.0
55 imes 55mm	Longit.	2410	2490	8	54	14	1.8
20mm dia.	Longit.	2390	2490	8	51	11	1.4
Tube	Longit.	2390	2470	6	40	7	0.9
150mm dia. 105 × 105mm 55 × 55mm 100 × 25mm	Transv. Transv. Transv. Transv.	2290 2410 2390 2380	2390 2470 2470 2460	3 4 6 4	17 19 34 34	8 5 11 5	1.0 0.6 1.4 0.6

temperatures is unique at the high strength levels of the maraging steels.

The 18Ni2400 steel exhibits somewhat lower ratios of NTS/UTS than the lower-strength grades as shown in Figure 6.

Fracture mechanics

Metallic components with limited toughness can support tensile loads up to the yield stress if they are sufficiently flawless. Cracks or harmful discontinuities of sufficient size must pre-exist, or develop, for unstable fracture to occur at a stress below the tensile yield (0.2 per cent proof) stress. Fracture mechanics provides a means of determining the quantitative relationship between crack size, the elastic stress field surrounding the crack and the fracture properties of the material.

The controlling parameter in representing the combined effect of crack dimensions and stress field at the leading edge of a crack is K, the stress field intensity. In crack propagation, as the stress increases, the crack will first grow to a critical size determined by the toughness of the material before rapid crack propagation or unstable fracture is initiated. The stress intensity factor at the onset of rapid crack propagation is taken as a measure of fracture toughness and is designated K_c , the 'plane stress fracture toughness'.

Under conditions where the material is relatively ductile, K_c is the controlling factor in determining toughness and a shear type of fracture is obtained. For a given material, K_c varies with thickness and temperature. K_c tends toward a minimum value as the thickness increases and temperature decreases. This minimum value is called the 'plane strain fracture toughness', K_{1c} , and is associated with a brittle mode of rapid crack propagation.

The value of K_{1c} is of great practical importance in evaluating the toughness of high-strength materials. When the stress intensity factor reaches the value of K_{1c} slow crack growth is followed by rapid crack growth and brittle fracture. Of further practical importance is the use of K_{1c} to calculate the critical dimensions of a crack, or flaw, below which the steel may be used without danger of the crack initiating catastrophic failure. Thus it is useful in determining an allowable design stress to prevent propagation of the minimum flaw detectible by inspection.

Representative K_{1c} values of commercial heats of 18Ni1700,1900 and 2400 maraging steels in the solution-treated and aged condition are presented in Table 12. Similar data for cold-rolled and aged sheet of 18Ni2400 are given in Table 13.

Typical K_{1c} values for weldments in 18 per cent Ni maraging steels are given in a later section.

Table 12. Representative plane strain fracture toughness values (K_{1c}) of double vacuum melted commercial heats of 18Ni1700, 18Ni1900 and 18Ni2400 maraging steels.

(3-point bend tests on 127mm × 25mm × 12.7mm specimens)

Material	Product section size	Direction of test	Tensile strength	K _{ic}
			N/mm ²	MNm ⁻³ / ₂
18Ni1700	$\begin{array}{c} 127 \times 127mm \\ 127 \times 127mm \\ 200 \times 200mm \\ 250 \times 250mm \end{array}$	Longit. Transv. Transv. Transv. Transv.	1820 1800 1845 1860	101.5 93.1 89.9 89.8
18Ni1900	$\begin{array}{c} 130 \times 19 mm \\ 130 \times 19 mm \end{array}$	Longit. Transv.	2020 2020	68.7 66.5
18Ni2400	105 × 105mm	Longit.	2440	33

(Data by courtesy of Firth Brown Limited, Sheffield. U.K.)

Table 13. Plane strain fracture toughness values (K_{1c}) of 18Ni2400 maraging steel sheet, cold rolled and aged 3h 480°C. (Transverse tensile tests)

Sheet thickness	Cold rolling reduction	0.2% proof stress	Tensile Strength	Elong.	K _{1c}
mm	in thickness %	N/mm²	N/mm ²	%	MNm ⁻³ / ₂
3.7 3.0 2.0 1.24	25 45 60 75	2540 2510–2570 2590 2700	2570 2530–2610 2600 2740–2790	2.5 3 2 2	64 58 59 54

Fatigue properties

Conflicting data from fatigue tests on maraging steels have been reported. This is largely attributable to variations in the procedures used for the production of the test-pieces. The conventional preparation generally applied to high-strength alloy steels, of machining and polishing testpieces from fully heat-treated material, has sometimes been used, while in other instances the finished test-pieces have been prepared from solution-annealed maraging steel with ageing applied as the final operation. Thus wide ranges of fatigue properties have been obtained. Examples of the effects of test-piece preparation are shown by the fatigue curves in Figures 7–11. These curves also show the effects of notch stress concentration factor and of testing method, viz., rotating bend, tension-tension, and tension-zero stress on given heats of maraging steel. Figures 12-16 summarize comprehensive data on the effects of these factors based on tests of many heats.

The highest fatigue 5 strengths are obtained in shot-peened material of high purity and, where fatigue is an important criterion, the use of vacuum-refined material and application of shot peening to the finished component is recommended.

Figure 6. Variation of notched tensile strength of 18Ni2400 maraging steel and notched tensile/tensile strength ratio, with notch acuity factor, K_i.

Figure 7. Smooth-bar rotating-beam fatigue curves of 18Ni400 maraging steel.

Figure 8. Tension-zero stress

 $\left(R = \frac{S \min}{S \max} = 0\right)$

fatigue curves of 18Ni400 managing steel plate, 5mm thick. (After Brine F. E., Webber D. and Baron H. G., British Welding Jnl., 1968. **15**, (11), 541-546)

Figure 9. Notched- and smooth-bar rotating-beam fatigue curves of 18Ni700 managing steel. ($K_t = Notch$ stress concentration factor) (Data supplied by W.M. Imrie, Dowty Rotol Limited, Gloucester, U.K.)

Figure 10. Tension – tension

 $(R = \frac{S \min}{S \max} = 0.1)$ notched -

bar fatigue curves of 18Ni1700managing steel. (K_i = Notch stress concentration factor)

(After Souffrant M. P. 'Perspectives d'utilisation du managing en grosses pieces forgees', Conference on Les Aciers Speciaux au Service de l'Aviation, June 1967, Aéroport du Bourget)

Figure 12. Effect of notch stress concentration factor on the fatigue strengths of 18Ni1700 and 18Ni1900 managing steels for various cycles to failure.

$$R = \frac{Smean - Sa}{Smean + Sa} = -R$$

Figure 11. Rotating-beam fatigue curves of 18Ni2400 managing steel. Nitriding the surface of managing steels improves the resistance to fatigue.

Figure 13. Effect of notch stress concentration factor on the fatigue strengths of 18Ni1700 and 18Ni1900 maraging steels for various cycles to failure.

$$R = \frac{Smean - Sa}{Smean + Sa} = 0 \text{ to } 0.1$$

Figure 14. Fatigue strengths of 18Ni1700 and 18Ni1900 maraging steels for various cycles to failure in smooth-bar tests, $K_t = 1.0$, under alternating stress + steady stress conditions, $R = \frac{Sm - Sa}{N}$

Figure 15. Fatigue strengths of 18Ni1700 and 1900 maraging steels for various cycles to failure in notched-bar tests, notch stress concentration factor $K_t = 2.4-2.5$, under alternating stress + steady stress conditions, $R = \frac{Sm - Sa}{2}$

The effects of temperature on the mechanical properties of the various grades of maraging steel are presented in Figures 17– 22 and in Tables 14 and 15.

The dynamic modulus of elasticity values for the 18Ni1400 grade tend to be on the low side of the band shown in Figure 18 and those for the higher strength grades at the high side of that band. The vertical line at 20°C in Figure 18 shows the variation in modulus of elasticity according to the direction of testing in 4 mm thick plate which has been cold rolled 60 per cent followed by ageing. The modulus increases from about 180 to 213 GN/m^2 as the angle to the rolling direction is varied between 0° and 90°. This variation indicates that some preferred crystal orientation exists in the plate. In most applications it is not expected to be of engineering significance.

The effects of long-time exposure at elevated temperatures on tensile and impact properties are shown in Tables 16 and 17 (*page 16*), while stress-rupture and creep properties are presented in Figure 23 (*page 17*) as a Larson-Miller plot. The latter is based on limited data currently available and should be considered as tentative.

Mechanical properties of cast maraging steel (17Ni1600)

The cast grade of nickel maraging steel is normally solution annealed by homogenizing for 4 hours at 1150°C, followed by air cooling. Maraging of the solution-annealed material is effected by heating for 3 hours at 480°C. Typical mechanical properties after these treatments are presented in Table 18 (page 16). That table also shows that use of a double solution-annealing treatment at 1150°C and 820°C, with an intermediate reheating at 595°C, provides a significant improvement in toughness without impairment of tensile properties. Solution annealing at 820°C without prior homogenizing generally results in appreciable loss of ductility.

 $[\]frac{1}{Sm + Sa}$

Figure 16. Fatigue strengths of 18Ni1700 and 1900 maraging steels for various cycles to failure in notchedbar tests, notch stress concentration factor $K_t = 3.2-3.3$, under alternating stress + steady stress conditions,

$$R = \frac{Sm - Sa}{Sm + Sa}$$

Figure 17. Hardness of maraging steels as a function of temperature.

Figure 18. Effect of temperature on the modulus of elasticity of maraging steels, determined dynamically and by tensile measurements (the variation in the room-temperature dynamic modulus of cold-rolled and aged sheet as a function of angle to the rolling direction is indicated by the range of values shown).

Figure 19. Effect of temperature on the modulus of elasticity of 18Ni1700 maraging steel in compression.

Table 14. Effect of temperature on 0.2 per cent proof stress and tensile strength of 18 per cent nickel maraging steels.

Test temperature	Approximate ratio of strength at test temperature to	Change in 0.2% proof stress and tensile strength between 20 [°] C and test temperature				
Ĵ	strength at 20°C	18Ni1700 and 18Ni1900 grades N/mm²	18Ni2400 grade N/mm²			
-100	1.11	+170/250	_			
- 40	1.03	+50/80	-			
20	1.00	0	0			
100	0.95	- 80/140	-140			
200	0.90	-160/220	-240			
300	0.87	-170/280	-350			
400	0.82	-280/420	-440			
480	0.73	-420/550	-570			

Table 15. Effect of temperature on compressive yield stress and shear strength of 18 per cent nickel maraging steels.

	18Ni	1700	18Ni1900					
Test	Compressive yield stress		Compressive	e yield stress	Ultimate shear stress			
°C	N/mm²	Per cent of value at 25°C	N/mm²	Per cent of value at 20°C	N/mm²	Percent of value at 20°C		
20	-	-	1980	100	1130	100		
25	1840	100	-	-	-	-		
150	1650	90	-	-	-	-		
175	-	-	1790	90	-	-		
315	1540	84	-	-	-	-		
345	-	-	1670	84	940	83		
430	1450	79	1590	80	860	76		
540	1170	76	-	-	-	-		

Figure 20. The bearing strength (ASTM.E238 test) of 18Ni1900 maraging steel as a function of temperature.

Figure 21. The secant modulus of 18Ni1700 maraging steel as a function of applied stress at various temperatures. (Data derived from static tests)

Figure 22. The tangent modulus vs. stress for 18Ni1700 maraging steel at various temperatures. (Data derived from static tests)

Table 16. Effect of long-time exposure at elevated temperatures on room-temperature 0.2 per cent proof stress of 18 per cent nickel maraging steels.

	0.2% proof stress						
Condition	18Ni1400	18Ni	18Ni1700				
	N/mm²	Steel 1 N/mm ²	Steel 2 N/mm ²	N/mm²			
As-maraged	1450	1730	1860	2000			
Maraged+200h 150°C	-	1710	_	-			
Maraged+200h 260°C	-	1730	-	-			
Maraged+200h 370°C	-	1730	_	-			
Maraged+200h 480°C	-	1140	_	-			
Maraged+200h 540°C	-	830	-	-			
Maraged+200h 650°C	-	280	_	-			
Maraged+1000h 315°C	1540	-	1950	2060			
Maraged+1000h 370°C	1590	_	2000	2180			

 Table 17. Effect of long-time exposure at elevated temperatures on
 room-temperature impact strength of 18 per cent nickel maraging steels.

a	Charpy V-notch impact value							
Condition	18Ni1400		181	Ni1700	18Ni1900			
	J	daJ/cm ²	J	daJ/cm ²	J	daJ/cm ²		
As-maraged Maraged+1000h 315°C Maraged+1000h 370°C	56 43 52	7.0 5.4 6.5	24 22 16	3.0 2.8 2.0	18 18 18	2.3 2.3 2.3		

Table 18. Typical mechanical properties of cast 17Ni1600 maraging steel.

Heat treatment: a – Homogenized 4h 1150°C, air cooled. b – 4h 1150°C + 4h 595°C + 1h 820°C, air cooled. c – 4h 1150°C + 3h 480°C. d – 4h 1150°C + 4h 595°C + 1h 820°C + 3h 480°C.

Property	Solu anne	ition aled		Mara	aged	
	а	b		с		d
0.2% proof stress. N/mm ² Tensile strength. N/mm ² Elongation, Lo=5.65 √So.% Reduction of area, % Notched/smooth tensile strength ratio Modulus of elasticity(E). GN/m ² Modulus of rigidity (G) (torsional) GN/m ² Poissons ratio Hardness: HV	740 960 12 58 - - 295 20	750 990 13 62 - - - 320	1 1 (650 730 7 1.25 188 72 0.30 530		
Plane strain fracture toughness (K _{1c}). MNm ⁻³ / ₂ Charpy V- notch impact value at:	-	-	۶ J	49 32.5 daJ/cm ²	J	daJ/cm ²
–196°C –100°C –40°C 20°C	- - -	- - -	3 9 16 18	0.38 1.1 2.0 2.3	8 18 20 22	1.0 2.3 2.5 2.8

Figure 23. Larson-Miller plot of creep- and rupture-strength of 18% nickel maraging steels. The plotting of applied stress as per cent of the room-temperature tensile strength normalizes the data for all grades. The time-temperature conversion scales along the top of the diagram enable the LarsonMiller parameter to be converted into time and temperature values. K = Absolute temperature (Kelvin) t = Time in hours

Figure 24. D.C. magnetization curves of 18Ni1700 maraging steel in the solution-annealed and the maraged conditions. Normal coercive force values (Hc) of 18Ni1700 are: Solution-annealed 22–34 oersteds, 1750–2700 A/m. Maraged 21–54 oersteds, 1670–4300 A/m. Approximate remanence (Br) = 5.5 kilogauss or 0.55 teslas.

Physical properties

These are presented in Table 19 (*page 18*) and Figure 24.

Processing and forming

Hot working

The maraging steels are readily hot worked by conventional rolling and forging operations. A preliminary soak at 1260°C may be used for homogenization, except, for the 18Ni2400 grade for which soaking in the range 1200-1230°C has been found to be more satisfactory. If the latter steel is inadvertently soaked at 1260°C or higher, it is necessary to hold for a time at the lower suggested temperature to eliminate any possible damage that may have been caused by the high-temperature exposure. For all grades adequate working should be applied to break up the as-cast structure and minimize directionality. For optimum properties a minimum reheating temperature of 1100°C should be used prior to final hot working. Hot working can continue to 870°C for 18Ni2400 and to 820°C for the lower-strength grades. A fine grain size is obtained by application of adequate reductions at the lower temperatures during final hot working and this enhances toughness. The transverse ductility and toughness of thick sections receiving only limited amounts of hot work may be reduced compared with thinner material, this effect being partly attributable to an embrittling reaction which can occur in the prior austenite grain boundaries if the steels are cooled slowly through the critical temperature range 980–760°C. The mechanical properties of material embrittled by this mechanism can be restored by reheating to 1200°C and cooling rapidly to room temperature.

Examples of the effects of hot-work finishing temperature and of variation in cooling rate after hot working are shown in Figures 25–30 (pages 18–19). For the 13mm plate represented in these diagrams, finishing temperature and mode of cooling had no marked effect on the tensile properties after solution annealing and ageing (Figures 26 and 27). On the other hand, fracture toughness (K1c) measurements on fatigueprecracked edge-notched bend specimens showed greater effects of finishing temperature and cooling rate (Figures 28-30), illustrating that relatively rapid cooling is desirable from any finishing temperature and that the need for rapid cooling is greater for the higher finishing temperatures. If rapid cooling cannot be achieved (e.g., if air-cool ing must be used), a low finishing temperature with significant reduction at that temperature is desirable.

Figure 25. Effect of hot-rolling finishing temperature and subsequent mode of cooling on the tensile properties of 18Ni1700 maraging steel plate (13mm thick, 35% reduction in final pass at finishing temperature). Condition: hot-rolled and aged.

Figure 26. Effect of hot-rolling finishing temperature and subsequent mode of cooling on the tensile properties of 18Ni1700 maraging steel plate (13mm thick, 35% reduction in final pass at finishing temperature). Condition: annealed at 815°C and aged. **Table 19.** Physical properties of nickel-cobalt-molybdenum maraging steels.

			Wrought	grades		Cast	grade
Property	18 18 18	18Ni1400, 18Ni1700, 18Ni1900		18Ni2400		17Ni1600	
Density g/cm ³		8.0		8	.1	8	.0
	KJ/kgK	С	al/g°C	kJ/kgK	cal/g°C	kJ/kgK	cal/g°C
Specific heat	0.46 0.11		0.46	0.11	0.46	0.11	
Thermal	W/mk	cal	/cms°C	W/mK	cal/cms°C	W/mK	cal/cms°
conductivity at: 20°C 100°C 200°C 300°C 400°C	21 23 26 27 28		0.050 0.054 0.061 0.064 0.066	- - - -	- - - -	29 32 37 - 41	0.070 0.077 0.088 - 0.099
480°C	28 0.067		-	-	-	-	
Mean coefficient of thermal expansion 10 ⁻⁶ /K 20–100°C 20–200°C 20–300°C 20–400°C 20–480°C	9.9 10.2 10.6 11.0 11.3		- - - 11.4		9.6 10.0 10.5 10.8 11.0		
	18Ni 1400	18Ni 1700	18Ni 1900				
Linear contraction on ageing, % approx.	0.04	0.06	0.08	0.	09	0.	03
	18	Ni170	00				
Electrical resistivity, * μ Ω cm: Solution annealed 820°C Maraged 3h 480°C	6 3	60–70 35–50		-			

* The electrical resistivity increases within the ranges given primarily with the titanium content of the steel.

Figure 27. Effect of hot-rolling finishing temperature and subsequent mode of cooling on the tensile properties of 18Ni1700 maraging steel plate (13mm thick, 35% reduction in final pass at finishing temperature).

Condition: annealed at 870°C and aged.

Figure 28. Effect of hot-rolling finishing temperature and subsequent mode of cooling on plane-strain fracture toughness (K_{1c}) of 18Ni1700 maraging steel plate (13mm thick, 35% reduction in final pass at finishing temperature). Condition: hot-rolled and aged.

18

Figure 29. Effect of hot-rolling finishing temperature and subsequent mode of cooling on plane-strain fracture toughness (K_{1c}) of 18Ni1700 maraging steel plate (13mm thick, 35% reduction in final pass at finishing temperature).

Condition: annealed at 815°C and aged.

Cold working

Hot-rolled or annealed maraging steels are easily cold worked. They work-harden very slowly and can be reduced substantially (up to 85 percent reduction) before intermediate annealing is required (Figure 31). The low work-hardening rate facilitates production of sheet, strip and wire. For forming and drawing applications, cold-rolled solutionannealed material is preferred because of its relative freedom from surface irregularities. However, hot-rolled solutionannealed material with good surface quality has performed satisfactorily. Tube spinning, shear forming, deep drawing, hydroforming, heading of fasteners, bending and shearing can all be accomplished by cold processes.

Cold work prior to ageing can be used to increase strength after maraging. Figures 32-34 show the change in the 0.2 per cent proof stress as a function of per cent cold reduction in 18Ni1700, 18Ni1900 and 18Ni2400. In all cases the proof stress for a given ageing treatment increases at an approximately constant rate up to about 50 per cent reduction, but thereafter strength increases at a higher rate for the 18Ni2400 steel, whereas for the lower-strength steels there is no further gain in strength with increase of cold work above 50 per cent and in some instances the strength may fall below the peak value corresponding to about 50 per cent reduction. Ductility also declines in maraged material above about 40 per cent reduction and when maximum toughness is required in the end product, it is desirable to limit cold reduction to 40 per cent.

Figure 31. Effect of cold work on the tensile properties and hardness of solution-annealed maraging steel.

Figure 32. The 0.2% proof stress of 18Ni1700 maraging steel is improved by cold working prior to ageing at 450°C and 480°C.

Figure 33. Effect of cold work prior to ageing at 450°C and 480°C on the 0.2% proof stress of 18Ni1900 maraging steel.

Figure 34. Tensile strength of 18Ni2400 maraging steel sheer (a) annealed and cold rolled, (b) annealed, cold rolled and aged.

Figure 35. Typical age-hardening curve of maraging steels. The hardening response is initially very rapid, while at the optimum ageing temperature the effect of overageing is slight even after 200 hours.

Heat treatment

The simple heat treatment cycle of the maraging steels is one of the major advantages of these materials. The alloys are normally solution-annealed at 820°C for a minimum time of 15-30 minutes for 1.3 mm thick sections and for one hour per 25 mm for heavier sections, followed by air cooling to room temperature. Air cooling is an adequate quenching rate to induce complete transformation to martensite throughout the heaviest sections because at temperatures above the martensite formation range the austenite has high stability and does not transform to other decomposition products such as ferrite, peralite or bainite, even at relatively slow cooling rates.

Solution-annealing at 820°C is generally sufficient to give complete recrystallization of hot-worked structures and to ensure the formation of a fully-austenitic structure from which martensite can form on cooling, whereas heating below that temperature may not achieve these requirements for the attainment of optimum strength and toughness. However, with some heats and product forms of the 18Ni1400, 1700 and 1900 grades heating above 820°C may be

Figure 36. Effect of ageing temperature and time on the 0.2% proof stress of maraging steels.

necessary to promote recrystallization in order to obtain optimum transverse properties. On the other hand, increasing the annealing temperature above 820°C for the 18Ni2400 grade causes a gradual but definite drop in all properties.

The high strength properties of the 18Ni1400, 1700, 1900 and cast 17Ni1600 maraging steels are developed within relatively short time when the annealed steels are aged at 480°C, the standard ageing time being 3 hours, while the effect of overageing is slight even after 200 hours (Figure 35). The 18Ni2400 steel agehardens at somewhat slower rate and an ageing temperature between 480°C and 540°C for times up to 12 hours at 480°C, or shorter times at the higher temperatures, is suggested to achieve the nominal 0.2 per cent proof stress of 2400 N/mm². Ageing this higher-strength steel at 510°C for 3 hours usually gives the optimum strength and toughness.

The effects of variations in maraging temperature and time on mechanical properties are presented in Figures 36–39.

Special furnace atmospheres to prevent decarburization during heat treatment are not required because of the low carbon content of the maraging steels. Normal precautions to prevent carburization, sulphurization or excessive oxidation are required. Fuel low in sulphur is preferred for fuelfired furnaces. Fuel oil containing not more than 0.75 per cent (w/w) sulphur is satisfactory and fuel gas should contain no more than 2.3 grams of total sulphur per cubic metre (l grain/cubic foot). All carbonaceous- and sulphur-containing impurities should be removed from the surfaces of material before annealing. Direct flame impingement on work material should be avoided. To produce a surface free of oxide, the material is heated and cooled to room

Figure 37. Effect of ageing time at 480°C on the mechanical properties of 18Ni1700 maraging steel. (Data by courtesy of Firth Brown Limited, Sheffield, U.K.).

temperature in an atmosphere of either pure dry hydrogen with a dew point of -43° C or dissociated (completely dissociated) ammonia with a dew point of -45° to -50° C.

A variant of the normal maraging heat treatment may be applied to finished products of the 18Ni2400 steel to provide

Figure 38. Variation of tensile and impact properties of 18Ni2400 maraging steel with ageing temperature (steel annealed 1h 820°C before ageing).

Figure 39. Variation of tensile and impact properties of 18Ni2400 managing steel with ageing time (steel annealed 1h 820°C before ageing).

additional hardening. This involves cooling the material slowly from 820°C or higher, or interrupting the cooling cycle in the temperature range 510–650°C and holding for several hours prior to cooling to room temperature. Ageing of the austenitic matrix occurs, 'Ausaging', which may be due to precipitation of the eta phase (Ni₃Ti). Subsequent maraging then increases the hardness to 61–62 Rc compared with about 58 Rc for normally annealed and maraged material. The hardening response induced by interrupted cooling from 820°C is shown in Figure 40.

The ausaging reaction can also occur during cooling after hot working, but generally it should be avoided at that stage by ensuring that there are no delays in cooling through the temperature range 650-510°C, since it may impair subsequent processing (e.g., cold working and machining) and might cause unsuspected and nonuniform properties in hot-rolled or heavy sections. An anneal of one hour at 820°C is usually sufficient to eliminate this effect.

Figure 40. Hardening induced in 18Ni2400 managing steel by interrupted cooling (Ausaging) from 820°C. Subsequent ageing (Managing) gives further hardening.

A further heat treatment variant may he applied to 18Ni2400 steel in the processing of ultra-high-strength wire to produce the best combination of strength and toughness at a given strength level. Instead of applying an intermediate anneal at the normal temperature of 820°C, between wire drawing steps, the material is annealed for 1 hour at 620°C. This results in partial reversion of the low-carbon martensite to austenite with retention of the latter phase on cooling to room temperature. Subsequent working creates instability of the austenite and, after final maraging, maximum strength is developed combined with improved ductility. These effects on properties are shown by the data given in Table 20 which compares material given intermediate annealing at both 820°C and 620°C.

Dimensional stability

The nature of the maraging hardening mechanism is such that close dimensional control can be maintained in components that are finish-machined in the soft, annealed, condition and subsequently hardened. Absence of retained austenite also ensures that the alloys will be free of further dimensional change in service. During maraging a very small uniform contraction occurs; the percentage changes for the various wrought grades of steel are shown in Figure 41. As illustrated by the curves for the 18Ni2400 steel, overageing by heating at higher temperatures or longer times than those normally used for maraging may result in higher-than-normal shrinkage and should be avoided in finished products made to close tolerances.

Table 20.	Effects	of	intermediate	annealing	on	the	mechanical	properties	of
18Ni2400	wire.			C					

Drawing procedure:			
Pre-drawing annealing treatment Initial diameter, mm First reduction, % Size, mm Intermediate anneal or reversion heat treatment	1h 815°C 6.4 87 2.3 1h 815°C	1h 815°C 6.4 87 2.3 1h 627°C	1h 815°C 5.8 85 2.3 1h 627°C
Final reduction, %	87	87	87
Final size, mm	0.8	0.8	0.8
Tensile properties of as-drawn wire:			
0.2% proof stress, N/mm ² Tensile strength, N/mm ² Elongation, %	1260 1540 0.86	1990 2530 1.2	2030 2540 1.7
Tensile properties of drawn and aged wire:			
0.2% proof stress, N/mm ² Tensile strength, N/mm ² Elongation, %	_ 2710 _	2530 2960 1.2	2600 2960 0.9

Nitriding

Maraging steels can be simultaneously nitrided and aged at 430-480°C to provide a shallow but hard case to improve wear resistance and/or fatigue properties. At the lower nitriding temperatures, 430–450°C, a surface hardness of about 860 HV can be obtained with a total case depth of about 0.15 mm after 48 hours' treatment. A typical hardness traverse through a nitrided case is shown in Figure 42. Nitriding above 450°C produces some stable austenite in the nitrided zone and decreases the hardness. However, at 480°C a hardness of about 800 HV can still be achieved and the total case depth may be increased to about 0.25 mm after 70-90 hours' treatment.

Welding and joining

Nickel maraging steels are readily weldable without preheat in either the solutionannealed or fully-aged conditions. Gasshielded arc processes are preferred; considerable experience and confidence has been generated with the TIG process. A machined groove preparation is desirable and the joint design may be the same as is commonly used for carbon steels. An argon gas shield is recommended for TIG and MIG welding, while pure helium is recommended for MIG short-arc welding. The maximum interpass temperature should be 120°C. Thorough interpass cleaning by power wire brushing is recommended. No postheat is required, but a post-weld ageing treatment such as 3 hours at 480°C is used to strengthen the weld and the heat-affected zone.

Heat-affected zone

The behaviour of the heat-affected zone of maraging steels contributes to their good welding characteristics. There is no cracking problem as in conventional high-strength low-alloy steels, and very little distortion occurs whether welding maraging steel in the solution-annealed or aged condition. The hardness distribution in the HAZ of solution-annealed material is shown in Figure 43. After welding, very little softening occurs in the parent metal and the joint has virtually the same strength as the annealed parent material. Following postweld ageing, negligible variation in hardness is observed in the heat-affected zone.

The HAZ hardness distribution of maraging steel welded after ageing is shown in Figure 44. Softening may be observed. in the grain-coarsened area near the fusion line and in regions which experience peak temperatures of approximately 650°C where partial austenite reversion and stabilization occurs. Tests of welded joints show that the fracture occurs in the weld metal, and that the characteristic notch toughness of the

Figure 41. Dimensional changes, due to ageing or ageing and reversion, of 18Ni2400 maraging steel aged at various temperatures, and of the lowerstrength wrought grades given the standard maraging treatment at 480°C. The steels were initially annealed one hour at 820°C.

Figure 42. Hardness of nitrided case on 18Ni2400 maraging steel billet, 95mm diameter. Steel annealed one hour 820°C, then simultaneously aged and nitrided 48 hours at 450°C in 25-30% dissociated ammonia (Knoop hardness determined with 100 gram load).

base metal is retained in the heat-affected zone. After re-ageing the weld area, virtually uniform hardness is obtained in the weld zone.

Gas-shielded processes

An essentially matching composition filler wire is used to weld the 18Ni1700 grade and has also been used for welding 18Ni1400 and 18Ni1900. Vacuum-melting and vacuum-annealing of the wire product is used in production of the filler material to provide the low impurity and hydrogen levels (H₂ is typically < 5 ppm) required for maximum weld properties. Filler wire

Figure 43. Typical heat-affected-zone hardness distribution in maraging steels welded in the solution-annealed condition. As-welded and after subsequent ageing.

Figure 44. *Typical heat-affected- zone hardness distribution in maraging steels welded in the aged condition. As-welded and after subsequent reageing.*

compositions closely matching these of the parent metals have also been developed for welding the 18Ni1400, 18Ni1900 and 18Ni2400 maraging steels. However, most work has been done with the 18Ni1400 and 18Ni1700 grades. Typical wire compositions are shown in Table 21.

Heat inputs are maintained as low as possible to achieve optimum strength and toughness in the weld deposits and rather low travel speeds are employed to avoid contamination of the weld metal by atmospheric gases. Typical welding parameters are shown in Table 22.

Representative mechanical properties of TIG, MIG and short-circuiting arc weldments are presented in Table 23. The fracture toughness measurements of welded maraging steels are lower than those of the parent material but are better than those of conventional guenched and tempered steels at the same proof stress levels. Joint efficiencies of 95-100 per cent are usual in welds of maraging steels having nominal proof stress values of up to 1700 N/mm², but welds made with high heat inputs can have efficiencies down to 85 per cent and occasionally may be lower. Tensile failures in such welds often occur in the heataffected zone as the result of formation of relatively large amounts of stable austenite. As the strength of the parent material is raised above 1700 N/mm² proof stress, joint efficiencies decrease. Small beads and low input help to keep strength reductions to a minimum. Solution-annealing a weld prior

 Table 21. Typical weld filler wire compositions.

Grade		Composition. Weight per cent									
	Ni	Co	Мо	Ti	AI	Other					
18Ni1400	18.2	7.7	3.5	0.24	0.10	0.03 max. C 0.01 max. S					
18Ni1700	18.1	8.0	4.5	0.46	0.10	0.01 max. P 0.10 max. Si					
18Ni1900	17.9	9.9	4.5	0.80	0.12	 0.10 max. Mn < 50ppm O < 50ppm N 					
18Ni2400	17.4	12.4	3.7	1.6	0.17	Soppin N Sppm H Bal Fe					

Table 22.	Typical	parameters f	or o	gas-shielded	arc	welding.
-----------	---------	--------------	------	--------------	-----	----------

Process	Volts	Amps	Travel speed mm/min.	Wire diameter mm	Wire feed rate m/min.	Shielding gas dm³/h
TIG	11–15	200–240	100–180	1.6	0.5–0.76	Argon 850
MIG	28–30	280–300	250	1.6	5	Argon 1400
Short Arc	24	140	Manual	0.8	–	He 1400

to ageing can increase strength significantly, but this may often be impractical.

The toughness of TIG weld-deposits is generally superior to that of MIG welddeposits made either by spray or shortcircuiting techniques.

Flux-coated electrode welding

Electrodes for manual metal-arc welding the 18Ni1400 and 1700 maraging steels have been developed, but have not been (a) Plate = 10-25 mm thick.

(a) Fide = 15 25 mm thick.
(b) Converted from Vickers Hardness value.

(d) Welds aged 4h 490°C

(e) All weld metal properties.(f) Weld locally aged.

(Ć) Commercially produced. (L) Laboratory produced.

 Table 23. Representative mechanical properties of gas-shielded arc weldments.
 (Welds aged 3h 480°C, except as stated otherwise)

Material welded	Thickness ^(a)	Fillet wire type and source	Welding process	0.2% proof stress	Tensile strength	Elong. Lo=25mm	Red. of area	Charpy impac	V-notch t value	K _{1c}
				N/mm ²	N/mm²	%	%	J	daJ/cm ²	MNm ⁻³ /2
18Ni1400	Plate	18Ni1400(C) 18Ni1400(C) 18Ni1700(L) 18Ni1700(C) 18Ni1700(C) 18Ni1700(C)	TIG MIG MIG TIG MIG Short Arc	1370 1430 1380 - - -	1430 1480 1480 1690 ^(bd) 1670 ^(bd) 1690 ^(bd)	13 6 7 - -	60 34 30 - -	47 28 24 - -	5.9 3.5 3.0 - -	- - 122 78 67
18Ni1700	Plate	18Ni1700(C) 18Ni1700(C) 18Ni1700(C) 18Ni1700(C) 18Ni1700(C) 18Ni1700(C) 18Ni1700(C) 18Ni1700(L) 18Ni1700(L) 18Ni1700(L)	MIG MIG TIG Short Arc TIG TIG Short Arc MIG ^(e) TIG	1560 1610 - - 1800 1790 ^(f) 1570 1660 1520 1690	$\begin{array}{c} 1670\\ 1660\\ 1650^{(bd)}\\ 1720^{(bd)}\\ 1720^{(bd)}\\ 1850^{(d)}\\ 1850^{(d)}\\ 1690\\ 1680\\ 1620\\ 1700\\ \end{array}$	4 6 4 3 4 6 7 -	7 2.8 - - - 14 21 30 -	14 - 16 19 	1.8 - - - 2.0 - 2.4 -	- 82 92 77 - - 210 (Kc)
18Ni1900	Plate Sheet	18Ni1700(L) 18Ni1900 18Ni1900 18Ni1900 18Ni1900 18Ni1900	MIG TIG MIG TIG TIG	1660 1390 1600 1800– 1930 1650	1680 1680 1690 1830– 1970 1670	6 8 3 - 3 (on 51 mm)	21 40 13 - -	- - - -	- - - -	– 65 59 124– 178 (Kc) –
18Ni2400	Sheet	18Ni2400	TIG	1970	2030	1.5 (on 51 mm)	-	-	-	36

used commercially to any great extent. Core wire compositions are basically the same as those of the parent alloys, except that the titanium contents are increased to allow for high losses of this element across the arc. However, under normal fabrication conditions the titanium losses are variable and unpredictable.

In studies of MMA welding there has been no real difficulty in achieving welds of the required high strength, but they have been associated with a greater propensity to weld cracking and poorer toughness than has been observed in joints made by inertgas welding.

Submerged-arc and electroslag welding

Both processes provide good joint strength, but weld ductility and toughness are low. In addition, multipass welds in submerged-arc welds have been subject to cracking. Neither of these processes is currently recommended for welding 18 per cent Ni maraging steels where maximum weld properties are required.

Other joining methods

Limited work on conventional spot- and seam-welding has shown promise, but more work is needed before these processes can be recommended for maraging steels. Ageing can be accomplished in the machine, although the relatively high-temperature short-time ageing cycles promote the formation of some austenite. Excellent friction-welded joints have been achieved. This process is especially useful for joining shafting, tubing and bar products. Table 24 presents typical tensile properties of friction welds.

Flash welding has not been successful to date; low tensile strength and especially low tensile ductility have sometimes been encountered. Additional work on optimizing the welding parameters may overcome this difficulty.

Satisfactory electron-beam welds have been made by a number of fabricators in several thicknesses of maraging steels from thin sheet to moderately thick plate. However, published information to date suggests that it is difficult to make sound welds consistently, particularly in thick plate. Edges to be welded must be machined to close tolerances to ensure the proper fit-up that is an essential part of making good electron-beam welds. A variety of welding conditions that have been used is summarized in Table 25 together with the mechanical properties of the joints obtained. The ductilities, as measured by reduction of area, were generally about half those of the base-plate values.

Dissimilar metal butt joints have been made in 13 mm plate between 18Ni1700 maraging steel, type 304 (18Cr-10Ni) stainless steel, mild steel, HY-80 (2³/₄ per cent Ni-Cr-Mo) and SAE4340 (1³/₄ per cent Ni-Cr-Mo) steels. The results showed (Table 26) that sound joints can be produced without difficulty and, as may be expected, the strength of a particular joint is governed by the weaker material of the combination.

Table 24. Tensile properties of friction welds in 25mm diameter bar of18Ni1700 maraging steel. (Welds aged 3h 480°C)

Specimen	0.2% proof stress N/mm ²	Tensile strength N/mm ²	Elong. Lo = 51 mm %	R of A %
Unwelded bar Friction weld ^(a) Friction weld ^(a) Friction weld ^(b)	1760 1730 1730 1740 1800	1810 1790 1780 1780 1820	12 7 7.5 7.5 7.3	58 35 36 40 38

(a) 13 mm diameter specimen.(b) 19 mm diameter specimen.

Table 25. Mechanical properties of electron-bear	am welds ^(a) in maraging steel plat	tes.
--	--	------

Grade and thickness		Welding o	conditions		Heat treatment ^(b)	Ме	chanical pr	operties		Charpy impac		
of plate	late No. of Voltage Current Travel			0.2% Tensile		Elong ^(c)	R of A			K _{1c}		
	1 00000		110 (cm/min.		N/mm ²	N/mm ²	%	%	J	daJ/cmz	MNm ⁻³ / ₂
18Ni1700		Unwelded	-	-	SA	1760	1830	5.7	28	-	-	-
2.5mm	1	30	65 65	100	SAW	1140	1140	2.5	21	-	-	-
		30 30	65 65	100	SWSA	1780	1890	4.1 3.2	13	_	_	_
18Ni1700		Unwelded	_	-	SA	1820	1840	15	-	_	_	_
7.5mm	1	150	20	150	SAW	1670	1670	4	-	-	-	-
		150 150	20 20	150 150	SAWA SWSA	1810 1880	1830 1900	4 5	_	_	_	_
18Ni1700		Unwelded	_	_	SA	1710	1790	22	51	_	_	_
13mm	1	150 150	17 17	43	SAW	1250	1300 1800	8 14	30 25	-	-	_
		150	17	43	SAWA	1720	1000	14	25	_	_	
18Ni1700		Unwelded	-	-	SA	1740	1790	12	50	-	-	96
Zəmm	1	50 50	320	100	SAWA SWSA	1770	1790	4 6.5	28 41	_	_	 ∫ 80
			010		01101			010				∫94
18Ni1400		Unwelded	-	-	SA	1430	1480	23	56	-	-	-
25mm	1	50	400	100	SAW	1010	1040	1	31	19 (defects)	2.4	-
		50	400	100	SAWA	1350	1370	4	13	27	3.4	_
18Ni1400		150	13	25	SAW	1100	1160	10	32	-	-	-
25mm	2	150	13	25	SAWA	1460	1500	7	14	-	-	-

(a) All samples failed in the weld.

(b) S = Solution-annealed. A = Aged. W = Welded.

(c) The tensile elongations must be treated with caution since the weld metal sometimes constitutes only a small portion of the gauge length.

Brazing has been successfully accomplished using palladium-containing and silver-copper-zinc alloys. Brazing temperatures in the range 800-870°C are considered to be the most suitable since temperatures in the austenite reversion range should be avoided unless the component is to be re-solution-treated prior to final ageing, while at temperatures above 870°C, times should be restricted to avoid grain coarsening and loss of ductility and toughness in the steel. For furnace brazing high vacuum is satisfactory, while dry hydrogen or argon atmospheres can also be used successfully providing a flux or preplated (e.g., with iron) surfaces are employed to achieve good flow and braze coverage. For torch brazing, use of a flux is mandatory, whether or not a pre-plate is used, although the latter does improve braze coverage and strength.

The degree of overlap in single-lap brazed shear specimens has a marked effect on shear strength, as shown in Figures 45 and 46, with strength decreasing rapidly as the overlap is increased. This is characteristic of brazements, because as the overlap increases, the greatest part of the load is carried by the ends of the joint while the central portion carries little load. In spite of the decrease in specific shear stress the tensile strength of the joint increases as the overlap increases (see Figures 45 and 46).

Figure 45. Effect of degree of overlap on shear strength of single-lap furnacebrazed joints in maraging steels. Specimens aged 3 hours 480°C after brazing.

A – 68% Ag, 27% Cu, 5% Pd brazing alloy; approximate liquidus temperature 810°C. Specimens brazed in argon.

B – 48% Ni, 31% Mn, 21% Pd brazing alloy; approximate liquidus temperature 1120°C. Specimens brazed in vacuum.

C – 54% Ag, 40% Cu, 5% Zn, 1% Ni brazing alloy; approximate liquidus temperature 855°C. Specimens brazed in argon.

Figure 46. Shear stress vs. overlap of torch-brazed single-lap joints in maraging steels. Specimens were preplated with iron and brazed with use of a flux, then aged 3 hours 480°C.

A – 82% Cu, 18% Pd brazing alloy; approximate liquidus temperature 1090°C.

B – 53% Cu, 38% Zn, 9% Ag brazing alloy; approximate liquidus temperature 870°C.

C – 27% *Cu*, 68% *Ag*, 5% *Pd* brazing alloy; approximate liquidus temperature 810°C.

Table 26.	Mechanical	properties	(transverse)	(a) <i>of</i>	13 mm t	thick wel	d joints	between	18Ni1700	maraging	steel	and va	arious
dissimilar	metals (posi	t-weld heat	treatment –	3h 48	30°C).		•			0 0			

Metal being joined	tal being joined Filler material		Welding	Condition	0.2%	Tensile	Elong. ^(a) Lo= 4.5√So	R of A	Location	Charpy V-notch impact value ^(c)	
			1 100000		N/mm ²	N/mm ²	%	%	fracture ^(b)	J	daJ/cm ²
Mild steel	INC	O-WELD * 'A'	Manual	As-welded	390	480	16	67	Р	108	13.5
			Arc	Aged	320	470	16	66	P	133	16.6
HY-80 steel	INC	O-WELD * 'A'	Manual	As-welded	380	610	14	43	W	106	13.3
			Arc	Aged	400	610	10	29	W	98	12.3
AISI 4340 steel	INC	O-WELD * 'A'	Manual	As-welded	390	650	13	45	W	108	13.5
			Arc	Aged	420	690	12	34	W	94	11.8
AISI 304 stainless	INC	O-WELD * 'A'	Manual	As-welded	350	610	26	34	W	129	16.1
			Arc	Aged	370	630	36	79	Р	132	16.5
Mild steel	18%	6 Ni maraging	MIG	As-welded	430	480	6	65	Р	34	4.3
	stee	əl ^(d)		Aged	340	460	5	65	Р	22	2.8
HY-80 steel	18%	6 Ni maraging	MIG	As-welded	750	800	8	59	Р	30	3.8
	stee	el ^(d)		Aged	740	800	7	58	Р	14	1.8
AISI 4340 steel	18%	6 Ni maraging	MIG	As-welded	1010	1110	4	13	W	22	2.8
	stee	el ^(d)		Aged	1170	1240	4	13	Р	11	1.4
AISI 304 stainless	18%	6 Ni maraging	MIG	As-welded	430	620	23	76	Р	38	4.8
	stee	əl ^(d)		Aged	420	620	32	75	Р	19	2.4
Weld Conditions		Manual Arc		MIG							
Current		125 A		280–290 A							
Voltage		24 V		32 V							
Travel speed		150mm/min		250mm/mir							
Wire feed		Manual		2001111/111							
Heat input		12kJ/cm		20–22k.l/cn	n						
Filler size		4mm rod		1 6mm wire							
Preheat		None		None							
······											

(a) 6.4 mm diameter tensile bar.

(b) Location of tensile fracture. W = Weld. P = Dissimilar metal being joined.

(c) Notched through weld, axis of notch normal to plane of plate.
 (d) Filler composition: 17.9 Ni, 8.1 Co, 4.9 Mo, 0.5 Ti, 0.13 Al, balance essentially Fe.

* Trade Mark of Henry Wiggin & Company Limited.

Joint clearance, like overlap, affects joint strength: Figure 47 shows that the narrower the gap, the higher the strength. 'Contact clearance', i.e., between 0 and 35 μ m, provides the best strength, while a gap of about 0-15 mm reduces the strength to about 70 per cent of the maximum level.

Figure 47. Average shear stress as a function of joint clearance in brazed maraging steel joints at an overlap of 2.5mm.

Machining and grinding

Maraging steels are machined most easily in the annealed condition. However, machining of maraged material is also possible and, in general, for either condition the same procedures should be used as are employed for conventional alloy steels having equivalent hardness levels. Rigid equipment and firm tool supports are essential. Tools should receive a copious stream of cutting fluid, with every effort being made to get the lubricant to the tool cutting edge.

Grinding is essentially the same as grinding conventional constructional steels when using a heavy-duty water-soluble grinding fluid as is employed with stainless steels. It is essential to use the heavy-duty grinding fluid as wheel wear is substantially greater with an ordinary water-soluble oil.

Suggested machining procedures are given in Table 27.

Table 27. Some suggeste	d machining procedures	for maraging steels. (1)
00	01	

TURNING. Single point and box tools.													
Condition of Stock	Т	ool materia	al	De	pth of mm	cut	Sp m/	ee mi	ed in.	Fe mm	ed /rev.	Lubricants* *	
Annealed	HSS * T15, N	′, AISI type ∕/33, M41-4	s 7			ſ	21	-2	-27 0.13-		-0.25	2, 5, 7	
	Carbio	de, ISO typ	e K1	C	0.64-			107–145		0.18–0.38		0, 4, 6	
Maraged	HSS * T15, N	*, AISI types M33, M41-47			3.8		14	1–18		0.13	-0.25	3, 5, 7	
	Carbide, ISO type K10			o J		l	32	2	49	0.13	-0.25	0, 4, 6	
					RE	AMIN	IG						
				F	Ream	er dia	me	eter, m	m				
Condition of stock		Tool mate	rial		6	113	25		38	51	Speed, m/min.	Lubricants* *	
						Fe	ed, m	m	/rev.				
Annealed	HSS* T15, N	, AISI types //33, M41–/	; 47	0.08	0.13	0.20	0.30)	0.38	0.46	17	2, 5, 7	
	Carbio K20	ide, ISO type		0.08	0.15	0.20	0.30)	0.38	0.46	49	1,4.6	
Maraged	HSS*, AISI types T15, M33, M41–47										3	3	
	Carbio K20	de, ISO typ	e	0.03	3 0.03	0.03	5 0.03	3	0.03	0.05	15	2.3	
					DF	RILLIN	IG		·				
				No	minal	hole	diame	tei	r, mm		Speed	Lubriconto* *	
Condition of stock	Tool	material	3	6	13	19	9 25		38	51	Speed	Lubricants	
				1	Feed, mm			n/rev.			m/min.		
Annealed	HSS	*, AISI ∫	0.08	3 0.13	3 0.1	8 0.2	23 0.	25	0.33	0.38	17	2, 5, 7	
Maraged	∫ M33	s 115, , M41–47	0.05	5 0.08	3 0.1	0 0.1	0 0.	10	0.10	0.10	6	3	
					TA	PPIN	G						
Conditio stock	n of		То	ol mat	erial				Spe m/n	eed nin.	Lu	ıbricants* *	
Annealed		HSS*, A	ISI ty	pes M	10, M	7, M1			6	6		3, 5, 7	
Maraged		HSS, nit	rided	M10,	M7, M	1			1.5			3	
								-					

 Machining data are largely reproduced from the 'Machining Data Handbook' of the Machinability Data Center, Metcut Research Associates Inc., U.S A.. with their kind permission.

* HSS - High Speed Steel

** Lubricants: 0 Dry. 1 Light duty oils (general purpose).

2 Medium duty oils (sulphurized or chlorinated). 3 Heavy duty oils (sulphurized or chlorinated).

4 Soluble oils (light duty).

5 Soluble oils (heavy duty).

6 Synthetic (light duty. general purpose).

7 Synthetic (heavy duty).

				S	AW	'ING	(Annea	led stock)							
Circular sa	wina				T۲	ickny	ass or h	ar diamet	or r	nm			Lubr	icants* *	
Tool materi	ial HS M2_M	S* 7		0.70			450				0.000		Lubi		
Ditch mm	IVIZ, IVI	1	F	6-76	_	15.2.24.1		150-230		230-380) 1)		
Cutting speed, m/min.			14 50 400			10.2 - 20	12	22.9-29.2		21.	8 8 2 20	4	} :	3, 5, 7	
	iev.			50-100		აი Ma	torial thi	20-00	hm		9–30		J Lubr	icants* *	
Power hack HSS* blade	ksawir Ə	ıg		< 6		6	-20	20-50			> 50		Lubi		
Teeth/dm			40) or mor	6		_0 10	24		-	16		J		
Speed, stro Feed, mm/s	okes/m stroke	nin.		85 0.13	0	8 0	85 .13	85 0.13		(85).13		} :	2, 5, 7	
PLANING															
Condition		Tool		Cutting			Feed, m	ım	De	pth of	cut, r	nm	- مار ا	icante* *	
of stock	m	aterial		m/min.	Rc pla	ough ining	Finish planing	Parting	Ro pla	ough aning	Fini: plani	sh ing	LUDI	icants	
Annealed	Tun	igsten o	r∫	12–15	C).4	5 max.	0.2 max.		5	0.2	5) 0 f	or rough	
Maraged		HSS*	n { 7.5		0.4		5 max.	0.1 max.		5		5	finis	or 3 for sh planing d parting	
MILLING															
		Fa	ce	milling		s m	Slab iilling	End pe	mil riph	lling - eral			End m slot	nilling - ting	
Tool materi for:	ial	HSS ³ AISI ty	∗ pe	Carbide pe ISO type		HSS* AISI type		HSS* AISI type		Carbide ISO type A		H AIS	ISS* SI type	Carbide ISO type	
Annealed s	tock	T15, M	33,	^{33,} 7 K20		T15. M33, M41–47		M2, M7]		M2, M7			
Maraged st	tock j	M414	17					{ T15, T1 M33, M41–47	7,	P20			-	K10	
Depth of cu mm	ut,	0.64- 3.8	-	0.64- 3.8	-	0	.64– 3.8	0.64– 3.8		0.3 1.	8– 3	1.3	3–6.4	1.3–6.4	
Speed m/m Annealed s	nin: stock	26–34	4	79–9	4	2	0–26	23–29		84–	107	18	3–21	-	
Maraged st	tock	9–12		20–2	6		-	8–9		23-	-30		-	12–15	
Feed: mm/tooth: Annealed s	Feed: nm/tooth: Annealed stock 0.08– 0.13		-	0.13 0.15	_	C).10–).13	0.03– 0.05 ^(a) 0.08– 0.10 ^(b)		0.0 0.0 0.1 0.1	4– 5 ^(a) 0– 3 ^(b)	0. 0. 0.	013 ^(c) 05– 06 ^(d)	-	
Maraged st	tock	0.08- 0.13	_	0.08– 0.10		-		0.03 ^{(a)(l}	b)	0.03– 0.05 ^(a) 0.08– 0.10 ^(b)		_		0.03 0.04 ^(d)	
Lubricants* Annealed s	tock	2, 5,	7	0, 4,	6	2	, 5, 7	2, 5, 7		0, 4	I, 6	2,	5, 7	0, 4, 6	
Maraged st	tock	3		0, 2			3 3			3			3	3	
(a) Cutter dia (b) Cutter dia (c) Width of s (d) Width of s	meter 1 meter 2 slot 6.4 r slot 25-5	2.5 mm 5-51 mm nm. 1 mm.													

Descaling and pickling

The oxide on hot-worked or thermally treated materials may be removed by blasting or pickling by the procedures described below. Fused salt-bath pickling processes that operate at or above 320°C should not be used on maraging steels. The mechanical properties may be modified by treatments at or above that temperature.

Duplex pickling

Solution No. 1

Immerse work in Solution No. 1. The time required for the removal of oxide with a specific chemical pickling solution is dependent upon the nature and the amount of oxide. To avoid over-pickling, the work should be frequently inspected during pickling.

	Parts by volume
Water	3
Hydrochloric acid (20° Baumé)	4
Temperature	70°C
Time	20 to 40 min. (additional time might be required for loosening heavy oxide)
Containers	earthenware crocks, glass, ceramic or acid-proof brick- lined vessels

The work coming from Solution No. 1 should be rinsed in cold water and immersed in Solution No. 2. The work from Solution No. 2 should be rinsed in cold water and then neutralized in a 1 to 2 per cent (by volume) ammonia solution.

Solution No. 2

	Parts by volume
Water	14
Nitric Acid (70%)	5
Hydrofluoric Acid (52%)	1
Temperature	25–30°C
Time	1½ to 2 min.
Containers	carbon or brick- lined tank

Single bath pickling procedure

Solution No. 3 is a rapid pickling solution that should be used cautiously to avoid overpickling. This solution leaves a black smut on the surface of the pickled material. Following pickling the work should be rinsed in cold water and then neutralized in a 1 to 2 per cent (by volume) ammonia solution.

Solution No. 3

	Parts by volume
Water	20
Sulphuric Acid (66° Baumé, 93%) or (60° Baumé, 78%)	3
Temperature	65-75°C
Time	Approx. 15 min. (avoid over- pickling by inspecting the work for time of withdrawal)
Containers	earthenware crocks, glass, or ceramic vessels or rubber- lined tanks

In atmospheric exposure, unprotected 18 per cent nickel maraging steels corrode in a uniform manner and become rust-covered. Pit depths tend to be more shallow than for conventional low-alloy high-strength steels, while corrosion rates of the maraging steels are about half those of low-alloy steels as shown by the data presented in Figures 48–50.

The corrosion rates for both maraging and low-alloy steels in seawater are similar initially, but from about six months onwards the former corrode more slowly (Figure 51).

In tap water and some neutral salt solutions the maraging steels are susceptible to pitting, but have lower average corrosion rates than low-alloy steels. Similarly the corrosion rates of maraging steels in acid solutions, although substantial, are lower than those of low-alloy steels. In general, protection of maraging steels from corrosive solutions is advisable.

Figure 52 shows that maraging steel has substantially greater resistance to oxidation in air at 540°C than a 5 per cent chromium tool steel.

Figure 48. Corrosion rates of maraging and low-alloy steels in an industrial atmosphere (at Bayonne, New Jersey, U.S.A.).

Figure 49. Corrosion rates of maraging and low-alloy steels, 24 metres from the sea, at Kure Beach, North Carolina, U.S.A.

Figure 50. Corrosion rates of maraging and low-alloy steels, 240 metres from the sea, at Kure Beach, North Carolina, U.S.A.

Figure 51. Corrosion rates of maraging and low-alloy steels in seawater flowing at 0.61 metres per second.

Figure 52. The oxidation rate at 540°C of 18Ni1700 maraging steel compared with that of 5% chromium steel. Tests performed on 6.4mm cubes in refractory crucibles, exposed to still air for total times of 5, 25 and 100 hours.

Stress-corrosion characteristics

In an earlier section the measurement of Plane Strain Fracture Toughness, K_{1c} , as an engineering criterion of toughness, has been described. This fracture mechanics approach to engineering design can also be used to measure the resistance of a material to propagation of a pre-existing crack in the presence of a corrosive environment. Thus it is possible to determine the critical stress intensity factor, designated K_{1scc} , below which a crack will not propagate under static loading conditions. Values of K_{1scc} are invariably less than those for K_{1c} .

Figure 53 presents K_{1scc} data for unprotected 18 per cent nickel maraging steels in relation to the 0.2 per cent proof stress, with comparative data for some highstrength low-alloy steels and stainless steels. These data embrace exposure in aqueous environments with and without NaCl, but the variations in environments are not distinguished since there is no distinct difference between their effects on K_{1scc} . Included in Figure 53 are lines showing critical crack depth, a_{cr} . The regions above these lines correspond to combinations of strength and K_{1scc} which a long crack of the specified depth will not propagate when stressed to the 0.2 per cent proof stress, while the regions below the lines correspond to strength/K_{1scc} combinations for which the crack would propagate. The critical crack depth for cracks whose length greatly exceeds their depth is given by the equation:

$$a_{\rm cr}=0.2 {\left[\frac{K_{\rm 1SCC}}{\sigma y} \right]}^2$$

where σy is the 0.2 per cent proof stress, and assuming that the applied stress = σy .

In general, it is clear that maraging steels compare favourably with other highstrength steels, and offer relatively high K_{1scc} values over a wide range of strengths. It is also clear that maraging steels can withstand greater crack depth without crack propagation under a given static stress.

There is some uncertainty regarding the roles of active path corrosion and hydrogen embrittlement in relation to stress-corrosion cracking of maraging steels. However, it is known that they are susceptible to hydrogen embrittlement, but to a lesser extent than other high-strength steels. This can result in fracture under static load above certain values depending on the level of hydrogen absorbed during corrosion, pickling, plating, from lubricants, heat-treatment atmospheres or welding. The time to fracture decreases with increase of stress above the threshold value. Removal of absorbed hydrogen and recovery of properties can be achieved by baking treatments as shown in Figure 54. The maraging steels exhibit fast recovery characteristics and a bake of 24 hours at 150–300°C is usually sufficient to recover the full mechanical properties of the material.

Electroplating and surface coating for corrosion protection

Maraging steels can be electroplated with chromium, nickel or cadmium to provide suitable protection for use in severe environments or in highly critical parts where even slight corrosion would be unsatisfactory. Hydrogen which forms during cleaning and plating operations may be absorbed by the steels causing some embrittlement and baking for 24 hours at 200–320°C after plating is recommended to effect its removal.

Inorganic protective coatings of the various black oxide types used on conventional steels can be applied also to maraging steels. Both chromate and phosphate types have been successfully applied. Saturating the coating with oil enhances the protection afforded. Oxalate coatings of the types applied to stainless steels may also be of interest. Organic coating systems which include polyurethanes and elastomeric neoprenes, such as are applied to conventional alloy steels, are being evaluated for nickel maraging steels.

Figure 53. K_{1scc} values of 18% nickel maraging steels and other highstrength steels as a function of 0.2% proof stress. Data from various tests in aqueous environments with and without sodium chloride.

Figure 54. Hydrogenated 18% nickel maraging steel regains static fatigue resistance rapidly when baked at 150°C. Tests were made on statically loaded notched tensile specimens hydrogenated by electrolytic charging at 0.011 amp/cm² for 21 hours.